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shell : a possible source for Mercury’s magnetic ¢eld?
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Abstract

We consider the magnetic field of a shell uniformly magnetized by an internal dipole that is subsequently removed.
The Gauss coefficients of the resulting field are given in terms of the spherical harmonic coefficients of the shell
thickness. This general solution can easily be reduced to common special cases by superposition. For a shell of
constant thickness the external field vanishes (by Runcorn’s theorem). For shell thickness variations caused by a
laterally varying temperature field, the resulting magnetic moments are appreciably greater than the previously
published correction due to rotational flattening. If the crust of Mercury contains rocks capable of sustaining high
specific magnetizations, orif Mercury had a now-extinct dynamo field which was more intense than the Earth’s
present core field, then the Mariner 10 observations of Mercury’s magnetic field are consistent in magnitude and
geometry with the predictions of this model. For such a scenario, the requirement of a fractionally large molten outer
core supporting a dynamo at present would be relaxed. The origin of Mercury’s magnetic field will be addressed with
measurements to be made by NASA’s MESSENGER spacecraft.
7 2003 Published by Elsevier B.V.
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1. Introduction

The internal state of Mercury is puzzling. The
simplest thermal evolution models for Mercury
(e.g., [1]) predict that, because of its small size,
the planet should cool rapidly and its initially
molten core should now be fully or nearly solid.
The discovery by Mariner 10 of Mercury’s global

magnetic ¢eld caused a dramatic shift in thinking,
and the ¢eld is now often ascribed to dynamo
generation by convection in a molten outer core
of substantial thickness [2,3]. This unexpected ob-
servation and its interpretation led to the emer-
gence of models that attempt to keep Mercury’s
interior hot and the core largely molten. These
conditions may be achieved by several means;
two popular ideas are the inclusion of sulfur in
the outer core, greatly reducing the melting point
due to the low eutectic temperature of Fe^FeS,
and the suppression of mantle convection, reduc-
ing the e⁄ciency of heat loss. The arguments for
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rejecting the alternative hypothesis, that the ¢eld
is crustal in origin [4^8], were severalfold. First,
intensely magnetized rocks were not believed to
be present in the natural environments of the ter-
restrial planets. However, the Mars Global Sur-
veyor (MGS) mission to Mars has provided a
striking demonstration that materials with speci¢c
magnetizations of V20 A/m are in fact present
[9,10]. Laboratory experiments further support
the possibility that single- and multi-domain ther-
moremanent magnetization (TRM) in some min-
erals is signi¢cant [11], although the required oxi-
dized minerals (e.g., hematite, magnetite) might
not be expected in the likely water-poor crust of
Mercury. Other magnetic minerals (e.g., pyrrho-
tite) can be considered for both Mars [12] and
Mercury. Secondly, an elegant theorem by Run-
corn [13,14], proving that a uniform shell magne-
tized by an internal source subsequently removed
has no external ¢eld, argues that even if magnetic
carriers are available in Mercury’s crust, they can-
not account for the observed ¢eld if they are dis-
tributed uniformly. Breaking the symmetry requi-
site to Runcorn’s theorem is the subject of this
paper.

Inhomogeneities in planetary crusts arise from
a variety of mechanisms, such as impact cratering,
tectonics, and magmatism. In part due to Mercu-
ry’s spin^orbit coupling, by which the planet spins
three times for every two revolutions around the
Sun, mean surface temperatures are strongly de-
pendent on position. For a constant, uniform,
conductive thermal gradient within the litho-
sphere, this spatial dependence will result in var-
iations in the depth to the Curie temperature Tc,
above which no TRM is possible for any given
magnetic carrier. Here, we investigate how such
variations in the thickness of the layer that is
available to be magnetized might be responsible
for external magnetic ¢elds. The following sec-
tions provide a general solution to the variable
layer thickness problem, demonstrate some spe-
cial cases that are easily obtained from it, and
apply the formulation to Mercury. Our aim is
not to dispute that Mercury’s magnetic ¢eld
may indeed originate in the core, but rather to
reexamine the often dismissed possibility that it
originates in the crust.

2. Magnetostatics

We consider the magnetic ¢eld of a homogene-
ous shell, magnetized by an internal dipolar ¢eld
aligned with the spin (z) axis that is subsequently
removed. We seek the solution for a shell with
one spherical boundary and one arbitrary bound-
ary. Arbitrarily shaped shells can then be consid-
ered by superposition of the solution for such
simple shells. For concreteness, we choose the in-
ner shell boundary to be spherical, and the outer
boundary is kept arbitrary (Fig. 1).

In the absence of any free currents and time-
dependent electric ¢elds, the magnetic ¢eld H out-
side a presumed, now extinct dynamo, satis¢es :

9UH ¼ 0 ð1Þ

Hence, the ¢eld can be written in terms of a
potential :

H ¼ 39x p ð2Þ

where in spherical coordinates the dipole potential
at a point (r, a, P) is of the form:

x p ¼
p

4Z
cosa
r2 ð3Þ

Fig. 1. Schematic illustration of a shell with an arbitrary out-
er boundary and a spherical inner boundary. The magnetiz-
ing dipole p is shown at the origin.
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where p is the dipole moment. For a linear me-
dium, the magnetization is:

MðrÞ ¼ cH ¼ pc
4Z

2 cosa
r3 r̂rþ sina

r3 âa

� �
ð4Þ

where (r“, âa , P̂P ) are the unit vectors in spherical
coordinates. While similar in form to the suscep-
tibility, the constant c actually measures the ratio
of the remanent magnetization to the applied ¢eld
after the latter vanishes. The scalar potential
xM(rP) resulting from this magnetization distribu-
tion M(r) that remains after the applied ¢eld H is
removed is ([15], p. 197, in SI units) :

xMðr0Þ ¼ 3
1

4Z

R
9 WMðrÞ
Mr3r0M

dv þ

1
4Z

R
MðrÞWn̂nðrÞ
Mr3r0M

ds ð5Þ

All integrals are over the entire volume v or
surface s, where n“ is the unit normal to the sur-
face. The ¢rst term vanishes, and the second term
can be expanded in Legendre polynomials :

1
Mr3r0M

¼ 1
r0
Xr
l¼0

r
r0

� �l
PlðcosQ Þ; r0sr ð6Þ

where Q is the angle between r and rP. The spher-
ical harmonic addition formula is used to write:

PlðcosQ Þ ¼ 4Z
2l þ 1

Xl

m¼3l

Y �
lmða ; P Þ Ylmða 0; P 0Þ ð7Þ

where Ylm is the complex spherical harmonic
function of degree l and order m, and * denotes
complex conjugation. Unless otherwise speci¢ed,
summations over l and m below will be from 0 to
r and from 3l to l, respectively. The harmonics
are de¢ned in terms of the associated Legendre
functions [16] :

Ylmða ; P Þ ¼

ð31Þm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l þ 1Þ

4Z
ðl3mÞ!
ðl þmÞ!

s
Plmðcosa ÞeimP ð8Þ

and are normalized to 1:R
Y �

lmða ; P ÞYl0m0 ða ; P Þd6 ¼ N ll0N mm0 ð9Þ

where d6= sina da dP and Nij is the Kronecker
delta symbol, which equals 1 for i= j and 0 other-

wise. It is often convenient to de¢ne the shell
boundary parametrically, so that on the integra-
tion surface:

r ¼ rða ; P Þr̂r ð10Þ

Using the shorthand de¢nition Da = D/Da, DP = D/
DP, and:

9 1 ¼ âa D a þ P̂P ðsina Þ31
D P ð11Þ

the unit normal is:

n̂nðrÞ ¼
r̂r3

1
r
9 1r

ĵrr31
r
9 1rj

ð12Þ

and the area element can be written as:

ds ¼ r2

r̂rWn̂n
d6 ¼ ĵrr31

r
9 1rjr2d6 ð13Þ

Substituting these expressions into Eq. 5, and
referencing to a radius a interior to rP, the poten-
tial is written as:

xMðr0; a 0; P 0Þ ¼ a
W 0

X
l;m

a
r0

� �lþ1
glm Y lmða 0; P 0Þ ð14Þ

where W0 = 4ZU1037 Tm/A. Each of the Gauss
coe⁄cients glm will have two contributions, one
from the integral over the outer surface, glmO,
and the other from the integral over the inner
surface, glmI :

glm ¼ gO
lm þ gI

lm ð15Þ

The contribution from each of the boundaries
is :

gO;I
lm ¼ �W 0

4Z
1

ð2l þ 1Þ
cp
a3

Z
O;I

2 cosa3
sina
r

D a r
� �

r
a

� �l31
Y �

lmða ; P Þd6 ð16Þ

The negative sign is appropriate for the inner
boundary due to the opposite direction of the unit
normal vector. It is convenient to expand the shell
topography in terms of spherical harmonics :

rO;Iða ; P Þ ¼
X
l0m0

rO;I
l0m0Yl0m0 ða ; P Þ ð17Þ
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In inserting Eq. 17 into Eq. 16, consider ¢rst
the terms that are not proportional to rl0m0 , where
lPv 1. The contribution of the integral of these
terms due to the inner and outer boundary inte-
grals sums to:

R
ððrO

00=aÞl313ðrI
00=aÞl31Þ2 cosaY �

lmða ; P Þd6 ð18Þ

This quantity always vanishes, due to the radial
term for l= 1, and due to the angular integral for
ls 1. Consider now the terms proportional to
rl0m0 , where lPv 1. Since the inner boundary was
taken to be spherical, only terms due to the outer
shell remain, and so we drop the superscript and
refer to that expansion as simply rlm hereafter.
Assuming that all but the ¢rst coe⁄cients are
small :

rl0m0

r00
I1; l0v1 ð19Þ

Expanding in terms of the small quantities :

1
r
D a rW

X
l0v1;m0

rl0m0

r00
D aYl0m0 ða ; P Þ ð20Þ

and making use of the identities :

R
Yl1m1ða ; P ÞYl2m2ða ; P ÞY �

lmða ; P Þd6 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þ

4Zð2l þ 1Þ

s
Cl0

l1;0;l2;0
Clm

l1;m1;l2;m2
ð21Þ

where Clm
l1;m1;l2;m2

are Clebsch^Gordan coe⁄cients
([16], 3 27.9) and:

D aYlmða ; P Þ ¼

m
cosa
sina

Ylmða ; P Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
L3M

p
Yl;mþ1ða ; P Þe3iP ð22Þ

for the derivative of the spherical harmonic func-
tions [16], gives ¢nally:

glm ¼
Xr
l0¼0

Xl0
m0¼3l0

W 0

4Z
cp
a3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l0 þ 1Þ
ð2l þ 1Þ3

s
Cl0

l0;0;1;0
rl0m0

r00

r00

a

� �l31

ð2l323m0ÞClm
l0 ;m0 ;1;03

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðL03M 0Þ

p
Clm

l0;m0þ1;1;31

� �
ð23Þ

where L= l(l+1), M=m(m+1), LP= lP(lP+1), and
MP=mP(mP+1). Table 1 lists glm up to degree
and order 4.

The Schmidt quasi-normalized real spherical
harmonic functions pŒlm that are conventional in
geomagnetism can be used to decompose the po-
tential :

xMðr0; a 0; P 0Þ ¼ a
W 0

Xr
l¼0

Xl

m¼0

a
r0

� �lþ1

p̂plmðcosa 0Þðĝglm cosmP
0 þ ĥhlm sinmP

0Þ ð24Þ

where:

p̂plmðcosa 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð23N m0Þ

ðl3mÞ!
ðl þmÞ!

s
PlmðcosP 0Þ ð25Þ

Table 1
Normalized potential coe⁄cients glm due to a shell of arbitrary topography, rlm, uniformly magnetized by an internal dipole of
moment p

l m= 0 1 2 3 4

0 0

1
2ffiffiffiffiffi
15

p r2;0
1ffiffiffi
5

p r2;1

2
2

5
ffiffiffiffiffi
15

p r1;0+
18

5
ffiffiffiffiffi
35

p r3;0
1

5
ffiffiffi
5

p r1;1+
12
5

ffiffiffiffiffi
2
35

r
r3;1

6

5
ffiffiffi
7

p r3;2

3
6

7
ffiffiffiffiffi
35

p r2;0+
12

7
ffiffiffi
7

p r4;0
4
7

ffiffiffiffiffi
2
35

r
r2;1+

3
7

ffiffiffiffiffi
15
7

r
r4;1

2

7
ffiffiffi
7

p r2;2+
6
7

ffiffiffi
3
7

r
r4;2

3
7
r4;3

4
4

9
ffiffiffi
7

p r3;0+
20

3
ffiffiffiffiffi
11

p r5;0
1
3

ffiffiffiffiffi
5
21

r
r3;1+

8
3

ffiffiffiffiffi
2
33

r
r5;1

2

3
ffiffiffiffiffi
21

p r3;2+
4
3

ffiffiffiffiffi
7
33

r
r5;2

1
9
r3;3+

16

9
ffiffiffiffiffi
11

p r5;3
4

3
ffiffiffiffiffi
11

p r5;4

The coe⁄cients can be related to the conventional Gauss coe⁄cients by Eq. 27. The quantity (W0cp/4Za3r00)(r00/a)l31 has been
factored out of each term. Real ¢elds can be described by terms with non-negative m, but in general this table is valid when
each index m is replaced by 3m.
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The real multipliers g“lm and h“lm are known as
Gauss coe⁄cients and are related to their complex
counterparts by:

ĝgl0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1

4Z

r
gl0

ĝglm ¼ ð31Þm
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1

2Z

r
ReðglmÞ

ĥhlm ¼ 3ð31Þm
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1

2Z

r
ImðglmÞ

ð26Þ

where Re and Im extract, respectively, the real
and imaginary parts of their arguments.

3. Special cases

We consider three special cases of the general
solution provided by Eq. 23 and Table 1: a con-
stant-thickness shell as in Runcorn’s theorem, a
shell with a generic degree-two £attening, and a
possible shell appropriate for Mercury.

3.1. Runcorn’s theorem

Runcorn’s [13,14] assertion, that lacking any
lateral variations in shell thickness the external
¢eld vanishes, is seen in the trivial case in which
all rl0m0 = 0 for lPs 0. In this case, glm is identically
zero.

3.2. Flattened shell

Suppose the outer boundary is given by:

rða Þ ¼ að1 þ RP2ðcosa ÞÞ ¼

a 1 þ R

3 cos2
a31

2

� �
ð27Þ

where a is the radius, and R is the £attening pa-
rameter, small with respect to 1. It is easy to show
that for this shell, £attened symmetrically about
the dipole (z) axis, the only two non-zero Gauss
coe⁄cients are:

ĝg10 ¼ W 0

4Z
cpR
a3

2
5

� �
ð28Þ

and

ĝg30 ¼ W 0

4Z
cpR
a3

6
35

� �
ð29Þ

Their ratio is g“30/g“10 = 3/7. The inducing dipole
¢eld potential has as its sole Gauss coe⁄cient:

ĝgp10 ¼ W 0

4Z
p
a3 ð30Þ

Hence, the l= 1 induced potential is reduced
relative to the imposed potential by the factor
g“10/g“p10 = (2/5)cR. Note that this ratio is indepen-
dent of a.

A comparison can be made with the e¡ect of a
shell of constant thickness t and £attening R. This
case can be considered as the di¡erence between
two shells with radii :

r1 ¼ að1 þ RP2ða ÞÞ ð31Þ

r2 ¼ að1 þ RP2ða ÞÞ þ t ð32Þ

Wa 1 þ t
a

� �
1 þ R 13

t
a

� �
P2ða Þ þO

t
a

� �2
� 

ð33Þ

By superposition, the resulting dipole moment
will be in proportion to the sum of the l= 1 Gauss
coe⁄cients:

Mz ¼
ĝgM2

10 3ĝgM1
10

ĝgp10

� �
p ¼ 3

2
5
cpR

t
a

ð34Þ

This agrees with the result by Runcorn [14] :

Mz ¼
16Zctp

15a
R

0 ð35Þ

as he normalized the P2 such that his £attening
RP=33R/2, and he has an additional factor of 4Z
due to choice of units.

Comparing the two cases, it is clear that the
£attened, constant-thickness shell has a ¢eld
smaller than the £attened outer boundary shell
by a factor of t/a, which can be of order 1/100.

3.3. Mercury

Consider the case in which the magnetized layer
thickness varies as a result of variations in depth
to a single Curie temperature, controlled by sur-
face temperature and uniform heat £ow. Since the
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insolation pattern should be symmetric about the
equator, only terms with even l are non-zero. Fur-
thermore, symmetry about longitudes 0‡ and 90‡
results in only cosine terms with even m. These
constraints simplify Table 1 considerably, such
that the only non-zero Gauss coe⁄cients up to de-
gree and order 4 are g10, g30, and g32. An appro-
priately constrained spherical harmonic expansion
of modeled near-surface temperatures [17], yields:

fr0;0; r2;0; r2;2; r4;0; r4;2gdT=dz

¼ f1230;3131; 81;382; 26g K

Other parameters in the expression for glm must
be estimated. Mercury’s planetary radius is taken
to be a= 2440 km. The thermal gradient near the
surface is assumed to be dT/dz= 10 K/km. For
these parameters, the Curie depth would vary by
about 10 km. A steeper (shallower) gradient
would increase (decrease) the magnitude of the
shell thickness variation and hence of the exter-
nally observed ¢eld. If the magnetization was ac-
quired from a dynamo generated in the core, then
one possibility is to assume the ¢eld strength at
Mercury’s core^mantle boundary (CMB) was
some factor f, of order unity, times its present
value at Earth’s CMB, on the grounds that the
square of the core ¢eld is expected to scale with
rotation rate, density, and inverse conductivity,
but not core size [18]. This would be the case if
Mercury’s dipole moment was approximately
p= 9.2U1021 Am2, roughly an order of magnitude
smaller than Earth’s present moment. However,
the dynamo could have been even more intense
early in the history of both Earth and Mercury.
The implicit assumption that the dynamo was
constant during the cooling of the shell is likely
to be an oversimpli¢cation in light of the fact of
typical reversal timescales for the present Earth
dynamo are shorter than the cooling time ex-
pected for such a shell. Combining these assump-
tions yields the following for the remanent ¢eld
(written in terms of the often tabulated Schmidt-
normalized Gauss coe⁄cients) :

ĝg10 ¼ 385 nTWfc

ĝg30 ¼ 3139 nTWfc

ĝg32 ¼ 63 nTWfc

ð37Þ

Under these assumptions, the e¡ect described
may be important for explaining Mercury’s ¢eld
if the product of the parameters fc is near unity.
For lunar basalts, the fraction of remanent mag-
netization is thought to correspond to cI1 [13].
However, magnetic ¢elds observed by MGS in
Mars orbit are as large as V1500 nT [9,10] and
are believed to originate in the crust. In terms of
speci¢c magnetization, such observed ¢elds indi-
cate values of at least 20 A/m [9,19]. If magnetized
in a ¢eld comparable to the Earth’s BW50 000
nT, or HW40 A/m, these values imply c can in-
deed approach unity. Of course, the larger the
value for f, the smaller the value for c can be to
produce a measurable ¢eld.

If c is large, non-linear e¡ects of self-magneti-
zation may not be negligible. For example, the
e¡ect of the Earth’s ellipticity has an appreciable
contribution from terms that are non-linear in the
susceptibility [20,21]. Combining a variable Curie
temperature depth with this e¡ect will require a
more complicated model than is presented here,
which would include, for example, the early ther-
mal evolution of the crust.

The best estimates to date for the magnetic ¢eld
of Mercury were obtained by Mariner 10 during
Mercury encounters I and III [22]. The estimates
for the dipole component g“10 range between 227
and 350 nT. This range of estimates can be ac-
counted for by attributing some of the observed
power to higher moments (such as an axisymmet-
ric quadrupole) [22]. The constraint on the dipole
moment is accordingly imprecise.

The computed Gauss coe⁄cients above demon-
strate that the e¡ect described may be relevant to
explaining the nature of Mercury’s magnetic ¢eld.
However, their values should not be viewed as
strict predictions. Rather, they are the consequen-
ces of an idealized crust containing none but the
long-wavelength inhomogeneity due to present-
day surface temperatures. A variety of processes
in the past and present surely have a¡ected the
crustal structure, and hence, any remanent ¢eld.

4. Conclusions

1. A general solution to the problem of a magne-
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tized shell of arbitrary thickness has been ob-
tained. The Gauss coe⁄cients of the resulting
¢eld are given in terms of the spherical har-
monic coe⁄cients of the shell thickness. This
solution can easily be reduced to common spe-
cial cases using superposition.

2. For a shell of variable thickness, such as might
be inherited from a variable temperature ¢eld,
the resulting magnetic moments are V100
greater than the previously published correc-
tion due to rotational £attening [14], the latter
being suppressed relative to the former by a
factor of t/a.

3. If Mercury’s crust contains rocks capable of
sustaining high speci¢c magnetizations, or if
Mercury had a now-extinct dynamo ¢eld
which was more intense than Earth’s present
core ¢eld, then the observations of Mercury’s
present magnetic ¢eld are consistent in magni-
tude and geometry with the predictions of this
model.

4. The question of whether Mercury’s present
magnetic ¢eld is generated in the crust will be
answered rapidly upon the arrival of the MES-
SENGER spacecraft [23] to the planet, as its
on-board magnetometer should detect asym-
metries in the ¢eld if it is crustal. Predictions
of the decay of the ¢eld’s power spectrum dif-
fer depending on the assumed source. While it
is possible, as shown here, for both the crust
and the core to lead to low-order ¢eld com-
ponents, a crustal ¢eld must possess local het-
erogeneities (due to structures such as impact
craters), implying more power at shorter wave-
lengths, that is, a slower decay of the power
spectrum. High-order components may be
present in a core ¢eld, but they would be atte-
nuated by upwards continuation to spacecraft
altitude.
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