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[1] We report on new observations of the orbital position of Phobos, the innermost natural
satellite of Mars, and show that these observations provide an improved estimate of the
rate of tidal dissipation within Mars. The observations were made with the Mars Orbiter
Laser Altimeter instrument on the Mars Global Surveyor spacecraft. The secular
acceleration in along-track orbital motion is conventionally expressed in terms of a
quadratic term in mean orbital longitude, which yields s = (dn/dt)/2 = (136.7 ± 0.6) �
10�5 deg/yr2, where n is the mean motion. The corresponding fractional rate of change in
orbital angular velocity is (dn/dt)/n = (6.631 ± 0.029) � 10�9/yr, the highest measured for
any natural satellite in the solar system. The energy dissipation rate is (3.34 ± 0.01) MW.
Because Phobos is so close to Mars, there are nonnegligible contributions to the tidal
evolution from harmonic degrees 2, 3, and 4. However, the elastic tidal Love numbers are
observationally constrained only at degree two. The observed acceleration is consistent
with that for a homogeneous Maxwell viscoelastic model of Mars with effective viscosity
of (8.7 ± 0.6) � 1014 Pa s.
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1. Introduction

[2] The Mars Orbiter Laser Altimeter (MOLA) instru-
ment on the Mars Global Surveyor spacecraft has observed
15 transits of the shadow of Phobos across the surface of
Mars, and has directly measured the range to Phobos on one
occasion. The observed positions of Phobos and its shadow
are in good agreement with predictions from orbital motion
models derived from observations made prior to 1990, with
the notable exception that Phobos is gradually getting ahead
of its predicted location. This effect makes the shadow
appear at a given location earlier than predicted, and
the discrepancy is growing by an amount which averages
0.8 s/yr. We model this effect, and interpret the required
modification in the orbital model as implying a revision to
the rate of tidal dissipation within Mars. It has long been
understood that tides can be effective in transferring angular
momentum from the spin of a planet to the orbit of a
satellite, or vice versa, depending on whether the satellite is
above or below the synchronous elevation, at which the
satellite orbital period matches the planetary rotation period.
The process was first examined in detail by Darwin [1911]
and in the case of the Earth-Moon system there is a very
clear signal, with the Earth’s spin slowing down, such that
the length of the day is increasing by (2.3 ± 0.1) ms per

century [Stephenson and Morrison, 1995] and the size of
the lunar orbit is increasing at a rate of (3.84 ± 0.07) cm/yr
[Dickey et al., 1994].
[3] In the case of Io, the innermost large satellite of

Jupiter, tidal heating produces very significant volcanism
on the satellite [Peale et al., 1979; Lopes-Gautier et al.,
1999; Peale, 2003]. However, there are two important
differences between Io and the Moon, both of which slow
the orbital evolution of the former. The tides raised by Io on
Jupiter are substantial, but because Jupiter is gaseous, the
tides are very nearly in equilibrium and dissipate little
energy. Also, because Io is locked in resonance with its
neighbors Europa and Ganymede, the associated orbital
evolution, per unit of transferred angular momentum, is
reduced [Yoder and Peale, 1981; Peale and Lee, 2002] and
despite nearly 400 years (�81,500 orbits) of careful obser-
vations, even the sign of the change in orbital motion is still
in dispute [Lieske, 1987; Aksnes and Franklin, 2001].
[4] The best known case of rapid orbital evolution in the

solar system is Phobos, innermost of the two natural
satellites of Mars. From the time of its discovery by Asaph
Hall on 16 August 1877 [Hall, 1878], the orbital motion of
Phobos has been intensively studied by Earth-based observ-
ers and from spacecraft. Phobos is very close to Mars, at a
mean distance of 9378 km, compared to 3394 km radius of
Mars, and with an orbital period of only 7.65 hours, is well
within the synchronous orbital distance. In the 127 years
since discovery, Phobos has completed �145,500 orbits,
equivalent to 705 years for Io, and 10,880 years for the
Moon. In terms of orbits completed under careful observa-
tion, Phobos can arguably lay claim to being the best
studied natural satellite in the solar system.
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[5] As might be expected from proximity to Mars, the
orbit of Phobos is experiencing a secular acceleration. Using
the theory of Woolard [1944], Sharpless [1945] estimated
an along-track acceleration of (1.82 ± 0.17) � 10�3 deg/yr2.
Subsequent observations have refined the estimate and
models generated in support of the Russian Phobos mission
[Sagdeev and Zakharov, 1989; Avensov et al., 1989; Morley,
1989] all give concordant estimates, as indicated in Table 1.
Given the long time span of the observations, and relatively
high accuracy of the models, it might be supposed that little
additional progress would occur. Indeed, relatively few
additional observations of Phobos have been made until
quite recently.
[6] Our primary interest in these MOLA observations is

that they can provide information about the interior of Mars.
Previous estimates of secular acceleration of Phobos have
been used to determine the tidal quality factor, or Q, of
Mars. This parameter is a common means of expressing the
relative rate of tidal dissipation and is defined as the
maximum energy stored in the tide, divided by the energy
dissipated per cycle. High values of Q correspond to low
rates of dissipation, per unit forcing. For any damped
oscillator system, the value of Q depends both on intrinsic
properties of the oscillator, and upon the frequency of the
oscillation and without further information, it is difficult to
determine what the Q would be at other frequencies. For
that reason, we will estimate an effective viscosity for Mars
which yields the observed tidal effects. However, since
much of the previous work on tidal dissipation within Mars,
and other planets, has been formulated in terms of Q values,
we will also use this formulation.
[7] On the basis of previous analyses of the orbital

acceleration of Phobos, the tidal Q of Mars has been
estimated to be Q = (100 ± 50) [Smith and Born, 1976;
Yoder, 1982]. For comparison, the tidal Q of Jupiter is likely
in excess of 106 [Goldreich and Nicholson, 1977; Ioannou
and Lindzen, 1993] and that of Earth is �10. However, most
of the dissipation of lunar tides occurs in the oceans [Egbert
and Ray, 2003]. It has only recently been possible to remove
the much larger oceanic dissipation and estimate the solid
Earth tidal Q = (280 ± 70) [Ray et al., 2001]. This is in
agreement with damping of seismic normal modes [Widmer
et al., 1991]. It thus appears that Mars is more dissipative
than Earth. This is an important conclusion, if true, and
attempting to better understand this situation is part of our
motivation for the current study.
[8] In an analysis of tidal dissipation within Mars, the

secular acceleration of Deimos is also potentially informa-
tive. It is outside the synchronous orbital distance, and is
thus expected to be evolving away from Mars. The astro-
metric observations of Deimos are nearly as numerous and
accurate as those of Phobos, but the secular acceleration is
small enough that the signal-to-noise ratio is not nearly as

good for Deimos, as can be seen in Table 1. In contrast to
the case for Phobos, where all of the recent estimates are in
good agreement, there is still considerable scatter among the
Deimos estimates.

2. Observations

[9] We will present and discuss three types of observa-
tions which constrain the orbital position of Phobos. The
first set of observations are measurements of the distance to
Phobos by the MOLA instrument on MGS. The second set
comprise detections of the shadow of Phobos on the surface
of Mars by MOLA. The earliest measurements we discuss
are observations by the camera on the Viking I lander as the
shadow of Phobos passed over it in 1977.

2.1. Range to Phobos

[10] The MOLA instrument was designed to measure the
topography of Mars with a laser [Zuber et al., 1992; Abshire
et al., 2000; Smith et al., 2001a]. In that mode of operation,
it transmitted a short (8 ns) pulse of laser light at 1064 nm
wavelength, and detected the reflected pulse in a 50 cm
aperture telescope, with 0.8 mrad field of view. The round-
trip time of flight of the laser pulse determines the range
from the spacecraft to the surface bounce point. The
instrument time is related to the spacecraft clock with
submillisecond precision [Neumann et al., 2001], and
spacecraft time is maintained by the Mars Global Surveyor
project with accuracy better than 30 milliseconds relative to
UTC. Onboard sensors determine the orientation of the
spacecraft with an accuracy of �1 mrad, and radio tracking
from Earth determines the trajectory of the spacecraft about
Mars with an accuracy of a few meters. Thus MOLA
provides an inherently precise and bias-free measurement
of planetary radius and related events at Mars.
[11] The direct range measurement to Phobos was made

on 12 September, 1998, during one of four close encounters
between MGS and Phobos during the aerobraking mission
phase. As discussed by Banerdt and Neumann [1999], a
total of 627 range measurements were acquired, over a span
of 63 s, and agreement between the measured range and
previous estimates of Phobos surface topography were quite
good, but required estimation of the location of the laser
footprints on the surface of Phobos and a small correction to
the satellite orbit. There was a 4 km discrepancy between
the measured and estimated ranges, but with a total posi-
tional accuracy estimate for the model of 17 km, this was
not seen as anomalous.

2.2. Shadow Detections

[12] The MOLA instrument is currently in use as a
passive radiometer. It no longer fires its laser, since the
master clock oscillator failed in 2001, halting the laser after
700 million pulses. However, its detector continues to sense
the 1 micron brightness of the surface of Mars. The surface
spot size depends on viewing geometry, but in nadir-pointed
mode, the field of view is a circle with radius 300 m. In
the passive radiometer mode, background brightness is
integrated over 1/8 s intervals (1 s intervals during topo-
graphic mapping), during which time the detector ground
track advances 375 m. The MOLA detector thus functions
as a 1-pixel camera, with a roughly 300 � 500 m resolution,
which is intermediate between that of imagers such as

Table 1. Phobos and Deimos Secular Acceleration Estimates

Source Phobos, 10�5 deg/yr2 Deimos, 10�5 deg/yr2

Sharpless [1945] 188 ± 17 �26.6 ± 16
Sinclair [1972] 96 ± 16 �6.3 ± 4.4
Sinclair [1989] 123.7 ± 1.7 �0.28 ± 0.79
Jones et al. [1989] 124.0 ± 1.7 �0.20 ± 0.80
Jacobson et al. [1989] 124.8 ± 1.8 �1.57 ± 0.81
This work 136.7 ± 0.6
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MOC, and the 3 � 5-km spots of the Thermal Emission
Spectrometer.
[13] In radiometer mode, MOLA measures variations in

albedo, changes in dust opacity, cloud cover, and seasonal
variations in albedo of polar ice. The MGS extended
mission phase has implemented a 16deg pitch to the
spacecraft attitude so that the emission angle is no longer
normal to the surface, with correspondingly greater uncer-
tainty in the position and range to the MOLA footprint.
[14] The size of Phobos, and its distance from Mars, are

such that the apex of the umbral cone, within which a total
solar eclipse would be seen, does not reach the surface of
Mars. The minimum diameter of the penumbra at the
surface is �60 km, when the shadow is located near solar
nadir, but extends in a broad ellipse as the shadow marches
from hemisphere to hemisphere with season. In any case,
the passage of a shadow of Phobos through the MOLA field
of view causes a detectable change in surface brightness.
[15] We searched the archive of surface brightness varia-

tions spanning three Mars years, concentrating on times
when the predicted shadow centroid was within 50 km of
the MOLA viewpoint. We have detected 15 shadow transits,
with parameters listed in Table 2. The best shadow detec-
tions occur when the shadow is near the equator and is
moving across low-relief, uniform albedo surfaces, but
nearly all light curves have provided usable estimates of
centroid time and duration of the darkening. Because solar
brightness varies from center to limb and considerable
light is scattered by atmospheric particles, the amount of
darkening is not strictly proportional to, and is generally
less than, the area of the solar disk obscured.
[16] In Table 2, we indicate for each detected shadow

event the time and location of the centroid. We also list the
estimated duration of the event, and an offset between the
observed and computed centroid times. A positive offset
means that Phobos was ahead of the estimate given by
the Jacobson et al. [1989] ephemeris. We also list an
error associated with the offset, which is determined by
the least-squares fitting procedure, as described below.
[17] Under favorable circumstances, the observed ‘‘light

curve’’ is quite analogous to what is seen when observing
eclipsing binary stars through a telescope [Wilson, 1994].
Figure 1 illustrates one of the detected shadow events. It is
listed as event 3 in Table 2, and has identifier AP11994L.

The parameters of primary interest are the centroid time,
and the duration and maximum amount of the darkening.
[18] The orbit of Phobos lies very nearly in the Mars

equator plane, so the shadow motion is mainly in a
longitudinal direction. The latitude of the shadow changes
much more slowly, with one cycle per Mars year. As the
subsolar latitude moves north after the vernal equinox, the
shadow moves south of the equator. Since the obliquity of
Mars is roughly 25.2 degrees and the orbital mean radius is
2.76 times the planetary radius, there are two periods during
each Mars year during which the Phobos-Sun line fails to
intersect the surface of Mars. The most recent shadow
detection in Table 2 is the last one possible during the
current eclipse season. For a more detailed discussion of the

Table 2. Phobos Shadow Events

Event Identifier Date Time, UTC h:m:s Duration, s Offset, s Error, s E Longitude, deg N Latitude, deg

a VL1-263 1977 Sep 20 20:40:03.718 30 �16. 3.0 312.0434 22.2689
0 Flyby 551 1998 Sep 12 22:44:31.638 63 1.75 0.25 337.3135 23.7130
1 AP10758L 1999 May 10 23:07:40.975 25 2.0 2.0 73.8112 �35.4330
2 AP11211L 1999 Jun 16 15:44:29.745 20 1.4 0.2 176.7834 �18.7435
3 AP11994L 1999 Aug 19 11:11:57.587 15 1.7 0.2 138.0214 8.0011
4 AP12080L 1999 Aug 26 04:00:29.597 18 1.8 0.2 310.3241 10.5700
5 AP19166L 2001 Mar 27 06:11:53.914 35 2.8 0.2 98.3065 �38.7748
6 AP20266L 2001 Jun 25 05:35:29.846 15 3.2 0.2 251.3572 6.0409
7 AR02012B 2002 Jan 12 21:20:29.756 23 5.6 1.0 154.9400 47.9917
8 AR02118B 2002 Apr 28 04:19:45.634 15 5.7 2.5 347.9598 �0.6501
9 AR02151B 2002 May 31 01:00:16.445 18 4.7 0.5 355.1518 �13.6179
10 AR03092B 2003 Apr 02 15:32:22.254 20 6.7 0.2 211.7248 �14.0436
11 AR03356B 2003 Dec 22 12:31:21.916 19 5.1 0.2 277.7320 29.7939
12 AR04017B 2004 Jan 17 16:27:09.046 15 5.6 0.2 111.7624 17.6689
13 AR04069B 2004 Mar 09 16:35:19.534 16 4.8 0.2 252.0035 �1.0661
14 AR04124B 2004 May 03 21:14:38.725 17 3.3 2.0 355.2571 �20.3817
15 AR04180B 2004 Jun 28 01:50:29.156 47 4.6 2.0 100.2560 �49.2834

Figure 1. Shadow event detection. Plus signs indicate
detected Mars surface brightness variations as seen by
MOLA, as a function of time, for shadow event 3 in Table 2.
The curve approximating the observations is computed
via ray tracing, as explained in the text. Unit for radiance is
W/m�2/sr/micron. The other curve illustrates distance
between the MOLA field of view and the predicted shadow
centroid. The offset of 1.7 s between the minima of these
two curves yields an estimate of the along-track correction,
or the amount by which Phobos is ahead of schedule. Unit
of distance is km.
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spatial and temporal pattern of motion of the shadow, see
Bills and Comstock [2005].
[19] The MGS spacecraft orbital inclination is 92.9

degrees, so its motion is mainly in a latitudinal direction.
Both orbits (MGS and Phobos) have low eccentricities, and
thus nearly uniform speed in the along-track direction. The
shadow of Phobos is nearly circular when it is close to the
subsolar point, and as it moves away from that point
becomes elongated along the axis connecting the shadow
centroid to the subsolar point. For small departures from the
subsolar point, the shadow is approximately elliptical.
When far from the subsolar point it departs somewhat from
the elliptical form, since it is defined by the intersection of a
nearly circular cone with a sphere. When circular, the
shadow diameter is roughly 30 km. Due to the low
inclination of the orbit, these circular shadows only occur
near to the equinoxes. The duration of a shadow detection
event depends on several parameters, including the size,
shape, and orientation of the shadow itself, and how closely
the MOLA field of view trajectory passes to the shadow
centroid.
[20] To predict the light curve, rays are traced from the

solar disk to the surface observation point during a window
of time of approximately 45–60 s duration. We model the
solar disk as an array of 70 � 70 pixels, each of them
20,000 km on a side, with a brightness that depends on
wavelength and on the pixel’s angular distance from center
q as ma, where m = cos (q) and a = 0.25 at 1064 nm
[Hestroffer and Magnan, 1998].
[21] We determine the position of the Sun and Phobos in

Mars-centered, inertial (J2000) coordinates using the NAIF
toolkit [Acton, 1996] applied to the nominal ephemeris
kernel mar033-7 [Jacobson et al., 1989; Sinclair, 1989],
using the JPL Developmental Ephemeris DE410 [Standish
et al., 1995, 2003], correcting the position of the Sun for
light-time and stellar aberrations. The rotations of Mars and
Phobos are calculated according to the IAU2000 planetary
model [Seidelmann et al., 2002].
[22] The solar disk is eclipsed where a ray intersects the

volume of Phobos, modeled as a triaxial ellipsoid with radii
13.4, 11.2, and 9.3 km. The normalized light curve is
compared to the observations in a least-squares sense, where
the model includes an unknown scale factor and back-
ground constant to account for attenuated and scattered
light. A total of 45 s of time is modeled to establish a
baseline. Figure 2 illustrates a sequence of simulated views
of the partially eclipsed Sun, at 1 s intervals, as would be
seen at points along the MOLA ground track for the same
event as in Figure 1. In this case, the shadow center is 20 km
off the MOLA track at closest approach, and the shadow
intersects the field of view for only 15 s. Variations in
surface albedo and illumination geometry are not accounted
for in our model.
[23] The residual between observations and model can be

minimized by adjusting the along-track position of Phobos

with respect to the nominal ephemeris. The position in a
direction perpendicular to the line of sight to the Sun, and to
the along-track direction, may also be adjusted, while
variations in the line of sight direction have virtually no
effect.
[24] For a given shadow configuration, and MOLA

ground spot trajectory, there will generally be two different
along-track positions of Phobos that would yield nearly
identical light curves. They are symmetrically placed on
opposite sides of the position which would yield a profile
across the center of the shadow. We have consistently
reported the smaller of the two corrections to along-track
position required to match the observed light curve. Figure 3
illustrates the pattern of misfit between observations and

Figure 2. Simulated solar views. Using the algorithm described in the text, simulated views of the
partially eclipsed Sun are constructed at 1 s intervals for event 3 in Table 2.

Figure 3. Misfit between MOLA observation and Phobos
predicted position. Contours indicate variance of the misfit
between observed brightness variations and computed
brightness variations, as the trajectory of Phobos is
perturbed away from that predicted by the Jacobson et al.
[1989] ephemeris. Along-track perturbations are indicated
in equivalent time, and cross-track perturbations are
indicated in distance at the surface of Mars. Note that there
are two broad minima, as discussed in the text. Dot indicates
location of minimum misfit at zero cross-track perturbation.
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predictions for the same event that was used in the previous
figures.
[25] In all but two cases the minimum misfit position lies

within 4 km of the nominal Phobos orbital plane. We do not
consider the minimization in the cross-track direction to be
sufficiently informative, pending a better understanding of
the possible atmospheric effects on the shadow. Therefore
we apply only the along-track perturbation in our analysis.
Where the surface is reasonably uniform and the light curve
is well-modeled, the precision of the estimate approaches
0.2 s, whereas in other cases the time and duration of the
transit is less well resolved. Error estimates are therefore
based on the discrepancy between the modeled perturbation
with across-track shift constrained and unconstrained.
[26] Table 3 lists the derived position information for

Phobos. We list both the time of each event and the
corresponding position of Phobos. The positions are listed
in Cartesian Mars-centered coordinates (X, Y, Z), and in
terms of a distance and direction from the center of Mars.
The direction is given in terms of right ascension and
declination in the J2000 system. We also list the distance
of the shadow center from the MOLA ground track, at the
time of closest approach.
[27] We also searched for Deimos shadow events and did

not find any. Because Deimos is both smaller and farther
from the surface of Mars, the shadows would be much
fainter. There were three occasions when the MOLA field of
view passed through the estimated location of a Deimos
shadow, but the background albedo variations are too high
to allow a secure detection.

2.3. Viking Lander Transits

[28] We also revisit the transits of Phobos seen by the
Viking lander 1 in 1977 [Duxbury, 1978; Christou, 2002].
These data are archived in the Planetary Data System (PDS)
Geosciences Node. Three images were taken during transits
with the scan platform held fixed on 20, 24, and 28
September 1977. The first of these images (11F119 on
DOY 263) showed a darkening of the ground in the red,
green and blue filters, with sky slightly darkened but most
of the time saturated. Local time of this image was early
afternoon (14.11h) so that scattered light was minimal.
Local times here are reported in Mars equivalent hours,

which are 1/24 of a Mars mean solar day, and are thus
roughly 1.0275 terrestrial hours in duration [Allison and
McEwen, 2000].
[29] The second and third images (12F125 and 12F136)

show darkening of ground and sky and were taken at local
times of 16.87 and 17.80. The predicted path of Phobos’
shadow center approached within 20 km on the 20th and
28th, while on the 24th, the closest approach was more than
65 km away and it is likely that all of the darkening was
from skylight. The atmosphere was dusty at the time,
making the effect of the shadows in late afternoon difficult
to model in a straightforward fashion.
[30] We have averaged the DNs of ground pixels (1–430)

for the first transit and show the light curves on the three
filters in Figure 4. The coordinates of the lander were
established by radiometric tracking [Folkner et al., 1997],
given in the IAU1994 reference frame. Translated to the
IAU2000 planetocentric coordinate system, the Lander’s

Table 3. Phobos Astrometric Parameters

Event
Centroid Time,
s From J2000 X, km Y, km Z, km R.A., deg DEC, deg Radius, km Distance, km

a �703091948.10 �3094.292 �8594.233 �2423.227 250.19895 �14.85768 9450.266 19.130
0 �41087665.06 �8054.643 �3536.339 2859.596 203.70357 18.00800 9249.879 443.738
1 �20350275.84 4892.861 7860.377 1482.607 58.09891 9.09750 9376.765 24.765
2 �17180065.07 2252.691 8520.991 3227.711 75.19153 20.11343 9386.161 10.470
3 �11666808.23 �2528.991 7449.935 5139.557 108.75054 33.15520 9397.466 21.784
4 �11087906.220 �3029.349 7177.711 5257.641 112.88215 34.01356 9398.897 20.764
5 38945579.110 5030.245 7940.990 1375.630 57.64766 8.32565 9500.266 5.524
6 46719396.030 �1623.827 7864.463 5092.268 101.66629 32.37990 9508.827 14.600
7 64142495.190 �6640.438 �6812.832 138.236 225.73416 0.83246 9514.684 7.431
8 73239651.067 993.184 �8282.858 �4560.795 276.83760 �28.66606 9507.524 14.025
9 76078883.131 3215.532 �7230.846 �5267.656 293.97455 �33.64962 9506.470 6.685
10 102569607.690 1305.351 8609.128 3761.189 81.37825 23.36178 9485.124 7.448
11 125368348.600 �5025.887 �7830.112 �1378.661 237.30495 �8.42844 9405.897 4.637
12 127628894.480 �3102.292 �8448.254 �2706.365 249.83621 �16.73668 9397.958 18.383
13 132122184.970 749.179 �8181.034 �4545.936 275.23227 �28.95805 9389.149 8.932
14 136890945.410 4322.490 �6309.931 �5440.339 304.41230 �35.42414 9385.970 14.603
15 141659494.590 6797.421 �3565.760 �5406.967 332.31960 �35.16115 9389.082 8.591

Figure 4. Viking Lander shadow observations. Observed
brightness variations in red, green, and blue channels, for
shadow event on 20 September 1977, are compared with
computed variations using model procedure described in
text.
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coordinates are 312.04343deg E, 22.26891deg N, at radius
3389.3156 km.
[31] The start time of the image recording is given in the

PDS label, but the stop time is approximate. The transit lies
mid-image, so that timing depends on the line rate assumed.
Christou [2002] inferred the scan time on the basis of the
number of sample bits 3072 plus a variable number of
engineering bits. This was assumed to be 3414 for each of
three colors, which was divided by telemetry rate (16000 bps)
to give 0.640125 s. The camera was designed to scan in
increments of 0.12deg, with a scan rate of 5.52 scans per
degree [Patterson et al., 1977]. Using these parameters we
obtain a scan time of 0.6624 s, slightly longer than that used
by the PDS to calculate end time. Christou [2002], using a
spherical shadow approximation, obtained an offset for this
transit of �10 s, while we estimate it at �16 s. Using the
image duration inferred from telemetry rates, we would
infer an offset of �13 s. Although the image start time is
thought to be accurate to 1 s, an uncertainty of 3 s in transit
offset time must be assumed.
[32] We also note that there have been recent observations

of both Phobos and Deimos from the PanCam instruments
on the Mars Exploration Rovers [Bell et al., 2004a, 2004b].
We have not included these observations in our current
analysis for three reasons. First, they overlap in time with
the MOLA observations, and thus provide less information
on purely secular effects than would be the case for earlier
or later observations. Second, they have not yet been
reduced to astrometric form. Third, the time at which the
observations were made is difficult to reconstruct at the
required accuracy, since the rover onboard clock was never
intended for such precise applications. However, we do
anticipate that these observations will be useful in con-
straining future ephemeris studies of both Phobos and
Deimos.

3. Fit to Observations

[33] We now describe our analysis of the recent observa-
tions, and explain the changes required in the orbital model
to accommodate both the MOLA observations and the
previously collected ground-based and spacecraft observa-
tions. As additional observations accumulate, both from
MOLA and from other orbiting and landed instruments at
Mars, it will likely become necessary to perform a complete
new analysis. This is partly due to the fact that spacecraft
observations have provided significantly improved esti-
mates of the gravitation field [Lemoine et al., 2001; Yuan
et al., 2001] and rotational parameters [Folkner et al., 1997]
of Mars, and thus the gravitational forcing experienced by
Phobos is considerably better understood than was the case
in 1990.
[34] However, as the corrections required to fit the new

observations are very small, and appear to be almost entirely
along-track perturbations, we can use a very simple linear
perturbation analysis and adjust only 3 parameters. If the
adjustments in time of along-track position were large,
compared to the shortest forcing periods, this simple line-
arization would not be sufficient. The orbital model has
secular effects, long period effects, and short period effects,
and the forcing periods are mainly at harmonics of the Mars
heliocentric orbital period, and the Phobos mean orbital

period. As these periods are incommensurate, the orbital
motion is quasi-periodic and a shift in time by a significant
fraction of the shortest period will alter the structure of the
beat patterns between the input periods. However, the rate
of accumulation of along-track position error is equivalent
to 0.8 s/yr, or a few parts in 107, and the linear analysis is
warranted.
[35] The parameters we adjust are only those which

determine the unperturbed orbital mean longitude. That is,
we write

l tð Þ ¼ Lþ n t � tð Þ þ s t � tð Þ2; ð1Þ

where l is the mean longitude, L is the mean longitude at
the reference epoch t, the mean motion is n, and s is a term
related to secular acceleration. Note that the secular
acceleration in longitude, or rate of change of mean motion,
is

dn

dt
¼ 2s t � tð Þ: ð2Þ

It could thus be argued that 2s would be a better parameter
to estimate. However, the form listed above is quite
traditional, in the literature on Phobos and Deimos, and
we retain it here. However, in comparing estimates of
secular acceleration for other satellites, caution is required,
as the parameterization scheme varies.
[36] A common means of illustrating the effect of the

secular acceleration, apparently initiated by Sharpless
[1945], is to fit a model which includes secular acceleration
to the observations, and then suppress the acceleration term.
A plot of the mean longitude residuals of the observations,
as a function of observation time, should be mainly para-
bolic in form. When Sharpless first utilized the display, a
parabolic trend was evident, but fairly significant periodic
residuals were also present. As the models and observations
have improved with time, and the time span itself has
increased, the parabolic trend has become dominant, as is
seen in Figure 5a. The longitude residuals from the obser-
vations prior to 1990 are taken from Jones et al. [1989]. The
MOLA points are clearly separated in time from the rest and
have errors too small to be seen at this scale. An expanded
view is given in Figure 5b.
[37] Our initial estimates of the parameters L, n, and s are

from Jacobson et al. [1989]:

L ¼ 138:003� 0:026ð Þ deg;
n ¼ 1128:8444070� 0:0000020ð Þ deg=d; ð3Þ
s ¼ 1:249� 0:018ð Þ � 10�3 deg=yr2:

Our adjusted estimates, obtained from a least-squares fit to
the augmented data set, are

L ¼ 137:790� 0:015ð Þdeg;
n ¼ 1128:8444068� 0:0000013ð Þdeg=d; ð4Þ
s ¼ 1:367� 0:006ð Þ � 10�3 deg=yr2:

In both cases, the stated errors reflect one standard
deviation. We compare our estimate of the secular
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acceleration term with several previous estimates in Table 1.
Residuals with respect to the new estimates are shown in
Figure 6. Note that the parameters L and n are dependent
upon the reference epoch t, but the curvature of the
residuals, which is determined entirely by the parameter s, is
invariant to epoch shifts. As an example, the change in
mean motion in our adjustment was very small, and with
a change in epoch, we could have made it zero. The least-
squares adjustment process also yields error estimates for
the adjusted parameters. Note that the relatively few MOLA
observations have reduced the error in the estimate of the
parameters quite substantially. That is due, in part, to the
higher accuracy compared to earlier observations, and partly
due to the extended time baseline. The interval between the
latest MOLA observation and the 1988 opposition, at which
the most recent observations used in previous analyses were
collected, is 14% of the complete time span from the
discovery of Phobos.

[38] Another point of interest is that our estimate of the
secular acceleration rate differs from the previous estimate
by 6 times the standard error of the previous estimate. The
Phobos ephemeris of Jacobson et al. [1989] was based on
the best estimates of the gravity field and rotational param-
eters of Mars available at that time. Subsequent work has
dramatically improved knowledge in both those areas [Yuan
et al., 2001; Folkner et al., 1997] and it seems that the time
is right for a full new analysis of the orbits of Phobos and
Deimos. The upcoming Mars Express close encounters with
Phobos will provide additional important constraints.

4. Interpretation

[39] We now turn to an interpretation of the secular
acceleration in the orbit of Phobos. The change in secular
acceleration required to fit the MOLA observations is
quite small. However, we use this occasion to revisit the
connection between orbital effects and internal causes. Past
analyses concerned with long term evolution of the satellite
orbit [Burns, 1972, 1992; Lambeck, 1979; Cazenave et al.,

Figure 5. Phobos longitude residuals. Circles indicate
mean difference between observed orbital longitude of
Phobos and that predicted by the Jacobson et al. [1989]
model when the secular acceleration term is set to zero.
Each of the curves is a parabola fit to the residuals, one
without, and the other with, the MOLA observations. (a)
Full range of residuals. (b) Expanded view of recent results.

Figure 6. Phobos longitude residuals. Similar to Figure 5,
but in this case the computed longitude includes the
parabolic trend estimated by fitting to all of the observa-
tions. (a) Full range of residuals. (b) Expanded view of
recent results.
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1980; Mignard, 1981; Yoder, 1982; Szeto, 1983; Yokoyama,
2002] have consistently assumed that the observed acceler-
ation arises from tidal dissipation within Mars, rather than
from interaction with the solar wind [Russell et al., 1990;
Sauer et al., 1995; Mordovskaya et al., 2001], the dust torus
[Hamilton, 1996; Nazzario and Hyde, 1997; Howard et al.,
2003], or other possible dissipative effects. Yoder [1982] has
raised the issue of dissipation within Phobos. In the present
study we assume that the dominant effect is due to tidal
energy dissipation within Mars, and attempt to quantify that
process.
[40] We will consider four elements of the tidal process.

The response of an ideal elastic body to tidal perturbations
sets much of the required background. We then consider the
influence on the orbit of a delay in tidal deformation, which
causes the tidal bulge to be misaligned with the tide raising
body. Next we consider the behavior under tidal forcing of a
particular model of viscoelastic deformation. Finally, we
consider the long term orbital evolution of a pair of tidally
interacting bodies.
[41] If the tide raised by Phobos on Mars were in

equilibrium with the tide raising potential, there would be
no influence on the orbit. However, if there is a delay or
time lag between the cause and effect, then the tidal bulge
applies a torque on the satellite and angular momentum is
exchanged between the spin of Mars and the orbit of
Phobos. The torque is proportional to the amplitude of the
tide and to the sine of the lag angle. The basic assumption of
our tidal analysis is that Mars responds linearly to imposed
gravitational potentials. An imposed potential F will cause
the body of Mars to deform, and thus give rise to an induced
potential �. If the potentials are expanded in terms of
spherical harmonics, we can write

�j r; q;fð Þ ¼ kj Fj r; q;fð Þ; ð5Þ

where {r, q, f} are the spherical coordinates of a point near
Mars, j is the harmonic degree, and kj is a proportionality
constant, or Love number [Love, 1911; Munk and
MacDonald, 1960]. The Love numbers depend on internal
structure of the deforming body, and reflect a competition
between elastic and gravitational influences. If the elastic
rigidity is sufficient, the body will deform very little, and
the Love numbers will be near zero. If the gravitational
effect dominates, the response will be purely hydrostatic.
For a purely elastic body, the induced potential will be
exactly aligned with the imposed potential, and there will be
no torque, no dissipation, and no influence on the orbit. If
there is dissipation, as would occur in a viscous or
viscoelastic body, then the deformation will lag behind the
imposed potential. The rate of energy dissipation is
proportional to the product of the stress times the strain
rate, and will depend on the density, rigidity, viscosity, and
rate of periodic forcing.

4.1. Elastic Models of Tidal Deformation

[42] For homogeneous elastic bodies, with density r and
rigidity m, the tidal Love numbers have values [Munk and
MacDonald, 1960]

kj ¼
3

2 j� 1ð Þ
x

xþ mwj

� �
; ð6Þ

where the effective gravitational rigidity is

x ¼ rgR; ð7Þ

the surface value of gravity is

g ¼ 4pG
3

rR; ð8Þ

and a numerical factor, different for each harmonic degree,
is

wj ¼
2j2 þ 4jþ 3

j
: ð9Þ

The effective gravitational rigidity of Mars is

x ¼ 49:68 GPa: ð10Þ

If we assume a value for the elastic rigidity of

m ¼ 100 GPa; ð11Þ

which is typical of Earth’s upper mantle [Dziewonski and
Anderson, 1981], we obtain estimates of the Love numbers

k2 ¼ 0:0745;

k3 ¼ 0:0324;

k4 ¼ 0:0188:

ð12Þ

Recent estimates of the degree 2 Love number of Mars
derived from tracking of the Mars Global Surveyor (MGS)
orbiter are given in Table 4. The measurement of k2 is
difficult, for numerous reasons [cf. Smith et al., 2003]. First,
the effect is small. Second, variations in the line-of-sight
geometry from Earth to Mars change the observability of
the effect over the course of a Mars synodic year. Third,
current orbiters are in Sun-synchronous orbits implying that
the spacecraft orbit is seeing the same nearly constant phase
of the tide. For MGS, at about 2:00 PM local time, the
spacecraft is principally sensitive to the latitudinal tidal
component as the Sun’s subsolar point moves in latitude
through the Mars seasons. Finally, there are temporally
correlated variations in the gravity field of Mars, associated
with seasonal mass flux into and out of the polar regions
[Smith et al., 1999]. These temporal variations in low
degree terms of the spherical harmonic representation of the
gravity field produce perturbations of spacecraft in orbits
such as MGS that are comparable in magnitude to the tidal
perturbations [Smith et al., 2001b].
[43] In practice, the recovery of k2 is accomplished in

concert with other Mars dynamical parameters. Given the
small amplitude of the signal and the number of parameters
being solved for, it has been common to simplify the
representation of the tidal potential by assuming symmetry
about the subsolar point. In this formulation the amplitude
of deformation is dependent only on the angular distance
from the subsolar position and is represented by a set of
zonal coefficients (k2,k3, . . .), of which the term with the
greatest power is the degree 2 term. This simplification
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implies that asymmetric components of the potential equal
the symmetric component (i.e., k2 = k2,0 = k2,1 = k2,2). In
their recovery of the tidal potential, Yoder et al. [2003]
instead implemented the more general form of the potential
and solved for k2,2, citing the fact that this term produced a
secular drift in the orbital inclination of a spacecraft in
the Sun-synchronous configuration. Their recovery was
only possible because the eccentricity of the MGS orbit
caused the spacecraft local time to drift slightly from Sun
synchronous.
[44] Another factor contributing to the quality of Love

number estimates is the solution methodology, i.e., what
parameters are adjusted or modeled in the inversion of the
tracking data. Spacecraft orbital geometry is mainly con-
strained by tracking from Earth and sensitivity to tidal
effects varies as the orbit plane orientation changes relative
to the Earth-Mars line. Use of data acquired in the most
favorable observing periods is thus crucial to obtaining a
well-constrained estimate.
[45] The lowest of the k2 estimates in Table 4 is in good

agreement with the prediction above, from a homogeneous
model. Subsequent determinations produced larger values,
with the best-determined values using only the data when
the MGS spacecraft was in a desirable viewing geometry
with respect to Earth. These larger values (0.153–0.163)
could be matched either by taking an effective elastic
rigidity of roughly 50 GPa, or by assuming a weak region
in the interior, such as a fluid core. Elastic Love numbers of
nonhomogeneous bodies can be computed via algorithms
given by Alterman et al. [1959], Peltier [1974], andWilhelm
[1986].

4.2. Tidal Phase Lag

[46] Redmond and Fish [1964] presented an analysis of
the secular acceleration, due to tidal dissipation, of a body in
a nearly circular orbit. Their analysis considered tides of
harmonic degrees 2 and 3, and equated the change in orbital
angular momentum to the applied gravitational torque. It is
easily generalized to yield

1

n

dn

dt
¼ �3na

X
j¼2

kj Fj gð Þ R

a

� �2jþ1

; ð13Þ

with R the planetary radius, a the orbital semimajor axis,
and

Fj gð Þ ¼ dPj cosgð Þ
dg

ð14Þ

a ¼ ms

mp

; ð15Þ

where Pj[x] is a Legendre polynomial of degree j, ms and mp

are the masses of the satellite and primary respectively, and

g is the tidal lag angle, or angular separation between
imposed and induced potentials associated with harmonic
degree j. If the dissipation is strongly dependent on forcing
frequency, the lag angles at different harmonic degrees will
be somewhat different. The first few angular coefficients in
the series are

F2 gð Þ ¼ � 3

2
sin 2g ’ �3g; ð16Þ

F3 gð Þ ¼ � 3

8
sin gþ 5 sin 3gð Þ ’ �6g; ð17Þ

F4 gð Þ ¼ � 5

16
2 sin 2gþ 7 sin 4gð Þ ’ �10g: ð18Þ

[47] A difficulty in estimating the tidal lag angle is that
the observed orbital motion depends on several other
parameters, whose values are not particularly well known.
Smith and Born [1976] used this model, truncated at degree
n = 3, in their analysis of tidal dissipation in Mars. They
faced the problem that the mass of Phobos was not well
known at that time. Subsequent estimates have much
improved the situation, and we adopt the estimates [Yuan
et al., 2001] for Phobos, Deimos, and Mars

G ms1 ¼ 7:14� 0:19ð Þ � 10�4 km3s�2; ð19Þ

G ms2 ¼ 1:50� 0:11ð Þ � 10�4 km3s�2; ð20Þ

G mp ¼ 42828:382� 0:001ð Þ km3s�2 ð21Þ

so that the factors of interest here, the ratios of the satellite
and planet masses, are

a1 ¼ 16:67� 0:43ð Þ � 10�9; ð22Þ

a2 ¼ 3:50� 0:25ð Þ � 10�9; ð23Þ

with virtually all of the error coming from the Phobos and
Deimos mass estimates.
[48] A remaining problem in estimating the tidal phase

lag is that the higher degree Love numbers are completely
unconstrained by direct observations. If we take the uniform
density, elastic body values listed above as estimates of the
relevant Love numbers, and assume that the phase lag is the
same for all harmonic degrees, we can write

1

n

dn

dt
¼ a g n 4186þ 478þ 60þ 8ð Þ � 10�6; ð24Þ

where the separate contributions from harmonic degrees 2,
3, 4, and 5 are listed. Using this relation, we find that the
apparent tidal lag angle is

g ¼ 0:6694� 0:0029ð Þ
; ð25Þ

Table 4. Estimates for k2 Love Number

Parameter Value Source Solution

k2 0.055 ± 0.008 Smith et al. [2001b] all data, weighted
k2 0.195 ± 0.003 Lemoine et al. [2001] all data, weighted
k2 0.201 ± 0.059 this paper all data, weighted
k2 0.163 ± 0.056 this paper best data
k2,2 0.153 ± 0.017 Yoder et al. [2003] best data
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and the corresponding tidal quality factor is

Q ¼ 1= tang ¼ 85:58� 0:37: ð26Þ

It should be noted that the quoted error is a formal estimate
only, and does not take into account the considerable
uncertainty in the elastic Love numbers nor the possible
variation in phase lag with harmonic degree. In fact, in the
following section, we will see that the phase lags are likely
to be quite different.

4.3. Viscoelastic Deformation

[49] We now attempt to relate the tidal phase lag to
physical processes within Mars. The simplest example of a
rheological model in which the tide would lag behind the
imposed potential is a Maxwell viscoelastic structure, which
is effectively a series connection of elastic and viscous
elements. Maxwell viscoelastic models of the Earth are often
used in consideration of postglacial rebound [Peltier, 1974;
Vermeersen and Sabadini, 1997] and associated rotational
perturbations [Sabadini and Peltier, 1981; Sabadini et al.,
1993]. In many discussions of planetary tidal dissipation
[Segatz et al., 1988; Peale, 2003], and associated orbital
evolution [Fischer and Spohn, 1990; Hussman and Spohn,
2004], Maxwell rheology is also invoked. A limitation
of these previous analyses, in the present context, is that
the tidal potential has been limited to the lowest order
(degree j = 2) terms, as is appropriate for more distant
planet-satellite interactions. However, for consideration of
the Mars-Phobos interaction, we are obligated to include
higher order terms. In order to make our analysis more
transparent and easily extensible, we will briefly review
some of the fundamentals.
[50] The elastic element of a Maxwell viscoelastic

structure, in which stress is proportional to strain, is
characterized by a rigidity m. The viscous element, in which
stress is proportional to strain rate, is characterized by a
viscosity h. For a series connection of these elements, the
stresses within them are equal and the strains are additive. In
response to a step-loading event, a Maxwell body will
exhibit an initial elastic strain, followed a steady viscous
strain rate. The Maxwell relaxation time

t ¼ h
m

ð27Þ

is the time required for the viscous strain to equal the initial
elastic strain.
[51] In response to a periodic forcing, with frequency w, a

Maxwell body will have stress

s tð Þ ¼ S exp i w tð Þ ð28Þ

and strain

e tð Þ ¼ E exp i w tð Þ: ð29Þ

The stress and strain functions can be related to each other
via an effective modulus, as though they were elastic:

S ¼ m* wð Þ E: ð30Þ

The primary departure from a pure elastic response is that
the effective rigidity is complex and frequency dependent. It
can be written as

m* wð Þ ¼ m
wtð Þ2þi wt

1þ wtð Þ2

 !
: ð31Þ

The real part represents the component of response which is
in phase with the forcing, and the imaginary part is the
response in quadrature. At high frequencies (t w � 1) the
response is mainly elastic and is very nearly in phase with
the forcing. At low frequencies, it is mainly viscous and will
lag behind the forcing by amounts approaching 180�.
[52] The tidal response of a homogeneous Maxwell body

is obtained via substitution of the effective modulus (31)
into the formula for the tidal Love number for an elastic
body (6). Because the tidal response has both buoyant and
viscoelastic components, and they are effectively connected
in parallel, the phase behavior is somewhat different than
for a purely viscoelastic element. The response is nearly in
phase with the forcing at both high frequencies, where the
response is effectively elastic, and at low frequencies, where
the response is mainly that of a buoyant fluid. Only at
intermediate forcing periods is there any appreciable phase
lag c, and it is obviously a function of the forcing
frequency. The maximum phase lag for a homogeneous
Maxwell body occurs at frequencies w for which

t2w2 ¼ x
xþ wj m

ð32Þ

and has a value

cmax ¼ tan�1 wj m

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x xþ wj m
� �q

0
B@

1
CA ð33Þ

which is independent of viscosity. At forcing frequencies
which are either higher or lower than this value, the phase
lag will be less. This phase lag is very important for the
secular orbital evolution problem. If the tidal bulge raised
on Mars by Phobos were exactly aligned with the current
position of Phobos, there would be no tidal torque.
[53] Note that the variations with forcing frequency in the

real and imaginary parts of the forced response are quite
different. The real part is essentially independent of
frequency on the high frequency part of the curve, where
the elastic aspect is dominant, and has a +2 logarithmic
slope on the low frequency part of the curve, where viscous
flow dominates. The imaginary part of the Love number has
somewhat similar low frequency behavior, but with a +1
logarithmic slope, and at high frequencies, rather than being
independent of frequency, it is has a �1 logarithmic slope.
The maximum value of the imaginary part of the Love
number occurs at the frequencies for which

t2w2 ¼ x
xþ wj m

� �2

; ð34Þ
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which is similar to, but somewhat different than, the
criterion for maximum phase lag, as discussed immediately
above.
[54] The absolute value of the tidal Love number is the

quantity reported in Table 4. For a homogeneous Maxwell
body, it can be written as

kj
�� �� ¼ 3

2 j� 1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 1þ t2w2ð Þ

x2 þ xþ mwj

� �2t2w2

vuut : ð35Þ

[55] In a layered viscoelastic body, the response will be
more complicated, but can still be described by a summa-
tion over the individual responses of the normal modes of
the body [Wu and Peltier, 1982; Vermeersen et al., 1996].
Each of the modal responses is identical in form to that for a
homogeneous body; all that changes is the amplitude and
relaxation time. That is, each mode contributes a real
response which has the same structure as the homogeneous
body’s real response, but with a different amplitude and
peak forcing frequency. The same is true for the imaginary
part of the tidal response. As a result, the maximum possible
rate of change in tidal response, as a function of forcing
frequency, is the same as for the homogeneous body. Two
frequencies which differ by a factor of 2 will have lag
angles which differ by, at most, a factor of two. Whether the
larger lag angle is at the higher or lower frequency will
depend on proximity to modal peaks.
[56] We know very little, at present, about the viscosity

structure within Mars. However, the smaller size of Mars,
compared to Earth, and larger surface to volume ratio
suggests that the interior of Mars is likely to be cooler
and thus more viscous than the Earth, all else being equal.
Thermal evolution models of support this notion [Spohn et
al., 1998, 2001; Nimmo and Stevenson, 2000]. If we take
1021 Pa s as a representative viscosity, which is typical of
the estimates obtained for global average upper mantle
viscosity of Earth [Peltier, 1974; Mitrovica, 1996], and also
assume a rigidity of 1011 Pa, as mentioned above, the
Maxwell time will be 1010 s, or roughly 320 years. In that
case, the orbital periods of Phobos and Mars are both very
much in the high frequency, elastic response domain. We
would thus expect the Love number estimates obtained from
solar tidal perturbations on artificial satellite orbits to be
quite independent of the forcing frequency. If the effective
viscosity of Mars were as low at 1018 Pa s, which is
characteristic of terrestrial regions with high heat flow, such
as the mid-Atlantic ridge at Iceland [Sjoberg et al., 2000], or
in continental settings of active tectonic deformation [Bills
et al., 1994; Dixon et al., 2004], the Maxwell time would be
only 0.3 year, so that some viscous relaxation could occur
during the Mars orbital period. However, as noted above,
thermal arguments would seem to suggest that the viscosity
within Mars should be much higher than that.

[57] Another important influence on the rheology of
terrestrial mantle rock is the water content. Recent work
has shown that addition of only a few parts per million of
water to initially dry olivine, in temperature and pressure
environments similar to those in the terrestrial upper mantle,
can reduce the viscosity by a factor of 30 [Hirth and
Kohlstedt, 1996; Dixon et al., 2004]. It seems clear that
using terrestrial analogs to predict the viscosity of the
mantle of Mars is still rather problematic.
[58] The spatio-temporal pattern associated with visco-

elastic tidal deformation combines several effects. For an
elastic tide, the deformation is symmetric about the line
connecting the center of the deforming body and the tide-
raising body. The spatial pattern of deformation is a weighted
sum of Legendre polynomials in angular distance from
that line, as seen from the center of the deforming body.
Viscoelastic deformation differs from the elastic pattern in
two important regards. The amplitudes of deformation at
each harmonic degree will differ from the elastic values,
and the axis of symmetry for each harmonic degree will
correspond to a past (rather than current) location of the tide
raising body. The time lags will generally be different for
different harmonic degrees.
[59] Each harmonic constituent of the tidal potential has a

spatial pattern proportional to Pj[cos(g)] where g is the
angular separation from the symmetry axis of that constit-
uent. Assuming an equatorial orbit for the satellite, we can
write this separation angle as a function of the longitude of
the tide-raising body fs and the latitude q and longitude f of
the surface point as

cosg ¼ cos q cos Dfð Þ; ð36Þ

where the longitude difference is abbreviated

Df ¼ fs � f: ð37Þ

If the angular rates are s for rotation of the deforming body,
and n for orbital motion of the tide raising body, then the
rate of change of the longitude difference is

d Df
dt

¼ n� s ¼ q: ð38Þ

The three bodies for which tidal motions are of interest at
Mars are the Sun, Phobos, and Deimos. As the sidereal
rotation rate of Mars is

s ¼ 350:892
=d; ð39Þ

the corresponding tidal rates and fundamental periods are
given in Table 5.
[60] We now reformulate the tidal evolution model of

Redmond and Fish [1964] incorporating the behavior of a
homogeneous Maxwell rheology. It should be noted that we
are not suggesting that Mars is actually homogeneous.
Rather, we are attempting to test the hypothesis that we
can find a simple mechanical model which approximates the
behavior which is observed. It is convenient to rewrite the
Legendre polynomials in the tidal potential function in
terms of the explicit locations of the tide raising body and

Table 5. Tidal Forcing Periods

Body
Sidereal Rate,

deg/d
Synodic Rate,

deg/d
Synodic Period,

hours

Sun 0.524 �350.368 24.660
Phobos 1128.844 777.952 11.106
Deimos 285.162 �65.730 131.447
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the point at which the potential is evaluated, and then
evaluate them on the equator. This yields

P2 cos g½  ¼ c2;0 þ c2;2 cos 2Df

¼ 1þ 3 cos 2Dfð Þ=4; ð40Þ

P3 cos g½  ¼ c3;1 cosDfþ c3;3 cos 3Df
¼ 3 cosDfþ 5 cos 3Dfð Þ=8; ð41Þ

P4 cos g½  ¼ c4;0 þ c4;2 cos 2Dfþ c4;4 cos 4Df
¼ 9þ 20 cos 2Dfþ 35 cos 4Dfð Þ=64: ð42Þ

Thus each harmonic degree will yield several forcing
frequencies, each of them an integer multiple of the
fundamental synodic frequency for that body.
[61] The induced tidal potential at longitude f, when the

tide raising body is at longitude fs, is

� fs;fð Þ ¼ ms

X
j

R

a

� �2jþ1Xj
h¼0

kj h qð Þ
�� ��

� cj;h cos h f� fs � c h qð Þð Þð ; ð43Þ

where c is the phase lag between imposed and induced
potential. The tidal torque is the product of a tidal force and
a corresponding lever arm. The acceleration is obtained as
the derivative of the induced potential with respect to
position of the tide raising body, evaluated at the location of
the satellite itself. Equating the rate of change of orbital
angular momentum to the applied tidal torque, we now
obtain the viscoelastic version of the tidal evolution
equation

1

n

dn

dt
¼ �3n

ms

mp

X
j

R

a

� �2jþ1Xj
h¼0

kj h qð Þ
�� �� cj;h h sin h c h qð Þð Þ:

ð44Þ

This is equivalent to equation (13), but with more explicit
forms for the Love number and phase lag. We note that, at a
given forcing frequency, there is generally only little
variation in phase lag with changing harmonic degree.
However, the spectral decomposition of the Legendre
polynomials (in equations (40), (41), and (42)) clearly
indicates that there are widely differing forcing frequencies
associated with the different harmonics. Thus the assump-
tion of a common phase lag for all the tidal constituents, as
was done in the preceding section, is seen to be a rather
poor approximation.
[62] If we use a homogeneous Maxwell model, there

are only two unknown parameters: the effective rigidity m
and the effective viscosity h. We have 3 observational
constraints on the frequency dependent viscoelastic Love
number of Mars. The first constraint comes from the values
discussed above for the degree two Love number, which are
estimates of the absolute value of that parameter at the
semidiurnal solar synodic period. The functional form of the
constraint is given in equation (35). The second and third
constraints come from the estimates of the secular acceler-

ation rates of Phobos and Deimos, which yield weighted
sums of the complex Love numbers at multiples of their
respective synodic periods. The functional forms of those
constraints are given in equation (44), immediately above.
Ideally, we should be able to estimate the Mars mechanical
parameters from any two of the three observations, or obtain
a weighted least-squares estimate from all three constraints.
What we find is that the least-squares solution

m ¼ 4:6� 2:0ð Þ � 1010 Pa

h ¼ 8:7� 0:6ð Þ � 1014 Pa s

is virtually identical to the two-parameter solution obtained
using the solar-forced Love number and Phobos secular
acceleration alone.
[63] In contrast to the situation for Phobos, neither of

the two constraint pairs involving Deimos yields a valid
solution. The value predicted for the Deimos secular accel-
eration rate, using the estimated Mars interior parameters is
�3.1 � 10�7deg/yr2, which is roughly 10% of the estimates
by Jones et al. [1989] and Sinclair [1989], but only about
2% of the estimate of Jacobson et al. [1989]. It thus appears
that the existing estimates of secular acceleration for
Deimos are still too large. Of course, it could be that our
model is too simple, and a homogeneous Maxwell model
does not properly capture the tidal dissipation behavior of
Mars.
[64] We note, for comparison, that using Earth values of

k2 = 0.302 and a phase lag of 0.20� for the lunar semidiurnal
tide [Ray et al., 2001], the effective rigidity and viscosity
values for a homogeneous Maxwell model are

m ¼ 1:44� 1011 Pa

h ¼ 2:21� 1017 Pa s:

This rigidity estimate is fairly typical of the terrestrial upper
mantle, but the viscosity is quite low compared to published
estimates of terrestrial mantle values [Peltier, 1974;
Mitrovica, 1996]. In the case of Earth, it is clear that the
presence of a substantial fluid core yields a global effective
viscosity substantially lower than the mean mantle viscosity.
The source of enhanced dissipation within Mars is not
obvious.
[65] Yoder et al. [2003] argued, from the relatively large

size of the degree two Love number, that Mars has a
substantial fluid core. While not disputing that as a possible
interpretation, we note that our homogeneous Maxwell
model equally well satisfies the observed value of the solar
forced tidal response of Mars. The fact that the effective
viscosity of Mars estimated this way is 250 times less than
the estimate derived for Earth suggests that presence of a
fluid core is not the entire explanation. As noted above,
thermal considerations suggest that, all else being equal,
mantle viscosity within Mars should be substantially larger
than for Earth. A somewhat more volatile rich mantle for
Mars would bring the two values closer together, but still
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fails to explain why Mars should be less viscous than Earth.
One attractive mechanism for producing large amounts of
dissipation is tidally forced flow of a fluid within a porous
solid [Nield et al., 2004]. In the present context that could
involve water in near-surface rock layers [Clifford, 1993;
Clifford and Parker, 2001], or partial melt within the mantle
[Kiefer, 2003; Wenzel et al., 2004].

4.4. Orbital Evolution

[66] We now consider the longer term implications of the
tidal evolution of the orbit of Phobos. Kepler’s third law of
planetary motion relates the size of an orbit to the orbital
period, and can be written as

a3n2 ¼ M2 ¼ G mp þ ms

� �
; ð45Þ

where a is the orbital semimajor axis, G is the gravitational
constant, and (mp, ms) are the masses of the orbiting bodies.
Upon differentiation, this yields a relationship between the
observed secular increase in mean motion and a correspond-
ing secular decrease in semimajor axis. The implied rate is

da

dt
¼ � 2 a

3 n

dn

dt
¼ � 4 a s

3 n
¼ �4:03� 0:03ð Þcm=yr: ð46Þ

Note that we have followed the usual convention of
estimating the coefficient s of the quadratic term in mean
longitude, rather than the linear term in the rate of mean
motion change, so that

dn

dt
¼ 2 s: ð47Þ

The orbit of Phobos is shrinking at rate similar to that at
which the lunar orbit is growing. A linear extrapolation of
this rate would suggest a remaining lifetime for Phobos of
�150 million years, at which point it would impact onto the
surface of Mars. However, as will be discussed below, the
orbital evolution is quite nonlinear, and the expected demise
of Phobos will be rather sooner than the linear estimate
would suggest.
[67] The total energy (kinetic plus potential) in a binary

orbit is

E ¼ �G mp ms

2a
; ð48Þ

where G is the gravitational constant, and (mp, ms) are the
masses of the orbiting bodies. The rate of orbital energy loss
for Phobos is

dE

dt
¼ �E

a

da

dt
¼ � 3:35� 0:01ð Þ � 106 W: ð49Þ

[68] It is instructive to write the tidal evolution formula of
Redmond and Fish [1964] entirely in terms of the semi-
major axis, rather than the mean motion. The result is

1

a

da

dt
¼ 2b a�3=2

X
j¼2

kj Fj gð Þ R

a

� �2jþ1

; ð50Þ

where we have combined the mass dependent terms in the
single parameter

b ¼ aM ¼ ms

mp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G mp þ ms

� �q
¼ 0:10907� 0:00028ð Þ m3=2 s�1: ð51Þ

If the orbital evolution were dominated by the degree 2 tide,
we could write

da

dt
¼ �f2 a�11=2; ð52Þ

with

f2 ¼ 4b g k2 R5: ð53Þ

The solution to this differential equation, assuming f2 to be
constant, is

a t½  ¼ a 0½  � 13

2
f2 t

� �2=13

: ð54Þ

This solution was used by Burns [1978] to estimate a
remaining lifetime for Phobos of 30–50 million years. We
note, however, that this is best viewed as an upper bound,
since the effect of higher degree harmonic tides increases
rapidly as Phobos gets closer to Mars. Our estimates of the
tidal Love numbers suggest that 10% of the present secular
acceleration is due to harmonic degree 3, and that ratio
increases with a�2. During the late stages of orbital
evolution, the rate of orbital decay will be appreciably
higher than would be estimated from the degree two
contribution alone. A more accurate assessment of the final
stages of the orbital evolution of Phobos would take into
account the dependence of the phase lags on the forcing
period, as was discussed above in connection with a
viscoelastic response model.
[69] Of course, the latest stages of orbital evolution will

presumably involve a tidally disrupted cloud of small
particles. Phobos is already inside the classical Roche limit,
at which a fluid would be pulled apart. The role of
finite strength complicates the analysis considerably, and
it is difficult to predict when Phobos will disintegrate
[Dobrovolskis, 1982, 1990; Bottke et al., 1997; Davidsson,
1999; Holsapple, 2001]. The story beyond that point would
involve formation and evolution of an ephemeral ring
system [Bills, 1992; Colwell, 1994].

5. Summary

[70] We report on new observations of the orbital position
of Phobos, which require an adjustment to previous
estimates of secular acceleration in longitude. Our new
estimate for that parameter is slightly higher, and much
better constrained, than the several estimates which were
published circa 1990. The significant improvement in the
accuracy of determination arises from a combination of
accurate measurements and extended time span of observa-
tions. The rate of secular acceleration in longitude directly
determines the rate at which orbital energy is being dissi-
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pated. Our analyses of the tidal lag angle, and attempts to
constrain internal dissipation mechanisms within Mars, are
more limited, since they require knowledge of other param-
eters, some of which are still rather uncertain. Continued
observations of Phobos and Deimos will eventually allow
improved estimates of the tidal response of Mars, which will
yield constraints on the mechanical properties of the deep
interior.

References
Abshire, J. B., X. Sun, and R. S. Afzal (2000), Mars Orbiter Laser
Altimeter: Receiver model and performance analysis, Appl. Opt., 39,
2440–2460.

Acton, C. H. (1996), Ancillary data services of NASA’s navigation and
ancillary information facility, Planet Space Sci., 44, 65–70.

Aksnes, K., and F. A. Franklin (2001), Secular acceleration of Io from
mutual satellite events, Astron. J., 122, 2734–2739.

Allison, M., and M. McEwen (2000), A post-Pathfinder evaluation of areo-
centric solar coordinates with improved timing recipes for Mars seasonal/
diurnal climate studies, Planet. Space Sci., 48, 215–235.

Alterman, Z., H. Jarosch, and C. L. Pekeris (1959), Oscillations of the
Earth, Proc. R. Soc. London, Ser. A, 252, 80–95.

Avensov, G. A., et al. (1989), Television observations of Phobos, Nature,
341, 585–587.

Banerdt, W. B., and G. A. Neumann (1999), The topography and ephemeris
of Phobos from MOLA ranging, Lunar Planet. Sci., XXX, abstract 2021.

Bell, J. F., et al. (2004a), Pancam multispectral imaging results from the
Spirit Rover at Gusev crater, Science, 305, 800–806.

Bell, J. F., et al. (2004b), Pancam multispectral imaging results from the
Opportunity Rover at Meridiani Planum, Science, 306, 1703–1709.

Bills, B. G. (1992), Venus satellite orbital decay, ephemeral ring formation,
and subsequent crater production, Geophys. Res. Lett., 19, 1025–1028.

Bills, B. G., and R. L. Comstock (2005), Spatial and temporal patterns of
solar eclipses by Phobos on Mars, J. Geophys. Res., 110, E04004,
doi:10.1029/2003JE002209.

Bills, B. G., D. R. Currey, and G. A. Marshall (1994), Viscosity estimates
for the crust and upper mantle from patterns of lacustrine shoreline
deformation in the eastern Great Basin, J. Geophys. Res., 99, 22,059–
22,086.

Bottke, W. F., D. C. Richardson, and S. G. Love (1997), Can tidal disrup-
tion of asteroids make crater chains on the Earth and Moon?, Icarus, 126,
470–474.

Burns, J. A. (1972), The dynamical characteristics of Phobos and Deimos,
Rev. Geophys., 10, 462–483.

Burns, J. A. (1978), The dynamical evolution and origin of the Martian
moons, Vistas Astron., 22, 193–210.

Burns, J. A. (1992), Contradictory clues as to the origin of the Martian
moons, in Mars, pp. 1283–1302, Univ. of Ariz. Press, Tucson.

Cazenave, A., A. Dobrovolskis, and B. Lago (1980), Orbital history of the
Martian satellites with inferences on their origin, Icarus, 44, 730–744.

Christou, A. A. (2002), Lander position determination on Mars using
Phobos transits: Application to Beagle 2, Planet Space Sci., 50, 781–
788.

Clifford, S. M. (1993), A model for the hydrologic and climatic behavior of
water on Mars, J. Geophys. Res., 98, 10,973–11,016.

Clifford, S. M., and T. J. Parker (2001), The evolution of the Martian
hydrosphere: Implications for the fate of a primordial ocean and the
current state of the northern plains, Icarus, 154, 40–79.

Colwell, J. E. (1994), The disruption of planetary satellites and the creation
of planetary rings, Planet. Space Sci., 42, 1139–1149.

Darwin, G. H. (1911), The Tides and Kindred Phenomena in the Solar
System, 437 pp., John Murray, London.

Davidsson, B. J. R. (1999), Tidal splitting and rotational breakup of solid
spheres, Icarus, 142, 525–535.

Dickey, J. O., et al. (1994), Lunar laser ranging: A continuing legacy of the
Apollo program, Science, 265, 482–490.

Dixon, J. E., T. H. Dixon, D. R. Bell, and R. Malservisi (2004), Lateral
variation in upper mantle viscosity: Role of water, Earth Planet. Sci.
Lett., 222, 451–467.

Dobrovolskis, A. R. (1982), Internal stresses in Phobos and other triaxial
bodies, Icarus, 52, 136–148.

Dobrovolskis, A. R. (1990), Tidal disruption of solid bodies, Icarus, 88,
24–38.

Duxbury, T. C. (1978), Spacecraft imaging of Phobos and Deimos, Vistas
Astron., 22, 149–161.

Dziewonski, A. M., and D. L. Anderson (1981), Preliminary reference
Earth model, Phys. Earth Planet. Inter., 25, 297–356.

Egbert, G. D., and R. D. Ray (2003), Semi-diurnal and diurnal tidal
dissipation from TOPEX/Poseidon altimetry, Geophys. Res. Lett.,
30(17), 1907, doi:10.1029/2003GL017676.

Fischer, H. J., and T. Spohn (1990), Thermal orbital histories of viscoelastic
models of Io, Icarus, 83, 39–65.

Folkner, W. M., C. F. Yoder, D. N. Yuan, E. M. Standish, and R. A. Preston
(1997), Interior structure and seasonal mass redistribution of Mars from
radio tracking of Mars Pathfinder, Science, 278, 1749–1752.

Goldreich, P., and P. D. Nicholson (1977), Turbulent viscosity and Jupiter’s
tidal Q, Icarus, 30, 301–304.

Hall, A. (1878), Observations and orbits of the satellites of Mars with data
for ephemerides in 1879, U.S. Govt. Print. Off., Washington, D. C.

Hamilton, D. P. (1996), The asymmetric time-variable rings of Mars,
Icarus, 119, 153–172.

Hestroffer, D., and C. Magnan (1998), Wavelength depencency of the solar
limb darkening, Astron. Astrophys., 333, 338–342.

Hirth, G., and D. L. Kohlstedt (1996), Water in the oceanic upper mantle:
Implications for rheology, melt extraction and the evolution of the litho-
sphere, Earth Planet. Sci. Lett., 144, 93–108.

Holsapple, K. A. (2001), Equilibrium configurations of solid cohesionless
bodies, Icarus, 154, 432–448.

Howard, J. E., A. V. Krivov, and F. Spahn (2003), Transverse halo orbits
about Mars?, Geophys. Res. Lett., 30(13), 1680, doi:10.1029/
2003GL017677.

Hussman, H., and T. Spohn (2004), Thermal-orbital evolution of Io and
Europa, Icarus, 171, 391–410.

Ioannou, P. J., and R. S. Lindzen (1993), Gravitational tides in the outer
planets, Astrophys. J., 406, 266–278.

Jacobson, R. A., S. P. Synnott, and J. K. Campbell (1989), The orbits of the
satellites of Mars from spacecraft and Earthbased observations, Astron.
Astrophys., 225, 548–554.

Jones, D. H. P., A. T. Sinclair, and I. P. Williams (1989), Secular accelera-
tion of Phobos confirmed from positions obtained on La Palma, Mon.
Not. R. Astron. Soc., 237, 15–19.

Kiefer, W. S. (2003), Melting in the martian mantle: Shergottite formation
and implications for present-day mantle convection on Mars, Meteorit.
Planet. Sci., 38, 1815–1832.

Lambeck, K. (1979), On the orbital evolution of the Martian satellites,
J. Geophys. Res., 84, 5651–5658.

Lemoine, F. G., D. E. Smith, D. D. Rowlands, M. T. Zuber, G. A.
Neumann, D. S. Chinn, and D. E. Pavlis (2001), An improved solution
of the gravity field of Mars (GMM-2B) from Mars Global Surveyor,
J. Geophys. Res., 106, 23,359–23,376.

Lieske, J. H. (1987), Galilean satellite evolution: Observational evidence
for secular changes in mean motions, Astron. Astrophys., 176, 146–158.

Lopes-Gautier, R., et al. (1999), Active volcanism on Io: Global distribution
and variations in activity, Icarus, 140, 243–264.

Love, A. E. H. (1911), Some Problems of Geodynamics, Cambridge Univ.
Press, New York.

Mignard, F. (1981), Evolution of the Martian satellites, Mon. Not. R. As-
tron. Soc., 194, 365–379.

Mitrovica, J. X. (1996), Haskell [1935] revisited, J. Geophys. Res., 101,
555–569.

Mordovskaya, V. G., N. N. Oraevksy, and J. Rustenbach (2001), Interaction
of Phobos with the solar wind plasma, Cosmic. Res., 39, 446–452.

Morley, T. A. (1989), A catalogue of ground-based astrometric observations
of the Martian satellites, 1877–1982, Astron. Astrophys. Suppl. Ser., 77,
209–226.

Munk, W., and G. J. F. MacDonald (1960), The Rotation of the Earth: A
Geophysical Discussion, Cambridge Univ. Press, New York.

Nazzario, R. C., and T. W. Hyde (1997), The dust bands of the planet Mars,
Adv. Space Res., 20, 1535–1538.

Neumann, G. A., D. D. Rowlands, F. G. Lemoine, D. E. Smith, and M. T.
Zuber (2001), Crossover analysis of Mars Orbiter Laser Altimeter data,
J. Geophys. Res., 106, 23,753–23,768.

Nield, D. A., A. V. Kuznetsov, and M. Ziong (2004), Effects of viscous
dissipation and flow work on forced convection in a channel filled by a
saturated porous medium, Transp. Porous Media, 56, 351–367.

Nimmo, F., and D. J. Stevenson (2000), Influence of early plate tectonics on
the thermal evolution and magnetic field of Mars, J. Geophys. Res., 105,
11,969–11,979.

Patterson, W. R., F. O. Huck, S. D. Wall, and M. R. Wolf (1977), Calibra-
tion and performance of the Viking lander cameras, J. Geophys. Res., 82,
4389–4400.

Peale, S. J. (2003), Tidally induced volcanism, Celest. Mech. Dyn. Aston.,
87, 129–155.

Peale, S. J., and M. H. Lee (2002), A primordial origin of the Laplace
relation among the Galilean satellites, Science, 298, 593–597.

Peale, S. J., P. Cassen, and R. T. Reynolds (1979), Melting of Io by tidal
dissipation, Science, 203, 892–894.

E07004 BILLS ET AL.: TIDAL DISSIPATION WITHIN MARS

14 of 15

E07004



Peltier, W. R. (1974), Impulse response of a Maxwell Earth, Rev. Geophys.,
12, 649–669.

Ray, R. D., R. J. Eanes, and F. G. Lemoine (2001), Constraints on energy
dissipation in the Earth’s body tide from satellite tracking and altimetry,
Geophys. J. Int., 144, 471–480.

Redmond, J. C., and F. F. Fish (1964), The luni-tidal interval in Mars and
the secular accleration of Phobos, Icarus, 3, 87–91.

Russell, C. T., J. G. Luhmann, K. Schwingenschuh, W. Riedler, and
Y. Yeroshenko (1990), Upstream waves at Mars, Geophys. Res. Lett.,
17, 897–900.

Sabadini, R., and W. R. Peltier (1981), Pleistocene deglaciation and the
Earth’s rotation: Implications for mantle viscosity, Geophys. J. R. Astron.
Soc., 66, 553–578.

Sabadini, R., G. Spada, and Y. Ricard (1993), Time dependent density
anomalies in a stratified, viscoelastic mantle: Implications for the geoid,
Earth’s rotation, and sea-level fluctuations, Surv. Geophys., 14, 537–553.

Sagdeev, R. Z., and A. V. Zakharov (1989), Brief history of the Phobos
mission, Nature, 341, 581–585.

Sauer, K., E. Dubinin, K. Baumgartel, and A. Bogdanov (1995), Deimos—
An obstacle to the solar wind, Science, 269, 1075–1078.

Segatz, M., T. Spohn, M. N. Ross, and G. Schubert (1988), Tidal dissipa-
tion, surface heat flow, and figure of viscoelastic models of Io, Icarus, 75,
187–206.

Seidelmann, P. K., et al. (2002), Report of the IAU/IAG Working Group
on cartographic coordinates and rotational elements of the planets and
satellites, Celest. Mech. Dyn. Astron., 82, 83–110.

Sharpless, B. P. (1945), Secular accelerations in the longitudes of the
satellites of Mars, Astron. J., 51, 185–186.

Sinclair, A. T. (1972), The motions of the satellites of Mars, Mon. Not. R.
Astron. Soc., 155, 249–274.

Sinclair, A. T. (1989), The orbits of the satellites of Mars determined from
Earth-based and spacecraft observations, Astron. Astrophys., 220, 321–
328.

Sjoberg, L. E., M. Pan, E. Asenjo, and S. Erlingsson (2000), Glacial
rebound near Vatnajokull, Iceland, studied by GPS campaigns in 1992
and 1996, J. Geodyn., 29, 63–70.

Smith, D. E., M. T. Zuber, R. M. Haberle, D. D. Rowlands, and J. R.
Murphy (1999), The Mars seasonal CO2 cycle and the time variation
of the gravity field: A general circulation model simulation, J. Geophys.
Res., 104, 1885–1896.

Smith, D. E., et al. (2001a), Mars Orbiter Laser Altimeter: Experiment
summary after the first year of global mapping of Mars, J. Geophys.
Res., 106, 23,689–23,722.

Smith, D. E., M. T. Zuber, and G. A. Neumann (2001b), Seasonal variation
of snow depth on Mars, Science, 294, 2141–2146.

Smith, D. E., M. T. Zuber, M. H. Torrence, and P. J. Sunn (2003), Estimat-
ing the k2 tidal gravity Love number of Mars, Eos Trans. AGU, 84(46),
Fall Meet. Suppl., Abstract P31A-05.

Smith, J. C., and G. H. Born (1976), Secular acceleration of Phobos and Q
of Mars, Icarus, 27, 51–53.

Spohn, T., F. Sohl, and D. Breuer (1998), Mars, Astron. Astrophys. Rev., 8,
181–235.

Spohn, T., M. H. Acuna, D. Breuer, M. Golombek, R. Greeley, A. Halliday,
E. Hauber, R. Jaumann, and F. Sohl (2001), Geophysical constraints on
the evolution of Mars, Space Sci. Rev., 96, 231–262.

Standish, E. M., X. X. Newhall, J. G. Williams, and W. M. Folkner (1995),
JPL Planetary and Lunar Ephemerides, DE403/LE403, JPL Rep. IOM
314.10-127, Jet Propul. Lab., Pasadena, Calif.

Standish, E. M., X. X. Newhall, J. G. Williams, and W. M. Folkner (2003),
JPL Planetary and Lunar Ephemerides, DE410, JPL Rep. IOM 312.N.03-
007, Jet Propul. Lab., Pasadena, Calif.

Stephenson, F. R., and L. V. Morrison (1995), Long-term fluctuations in the
Earth’s rotation: 700 BC to AD 1990, Philos. Trans. R. Soc. London, Ser.
A, 351, 165–202.

Szeto, A. (1983), Orbital evolution and origin of the Martian satellites,
Icarus, 55, 133–168.

Vermeersen, L. L. A., and R. Sabadini (1997), A new class of stratified
viscoelastic models by analytical techniques, Geophys. J. Int., 129,
531–570.

Vermeersen, L. L. A., R. Sabadini, and G. Spada (1996), Compressible
rotational deformation, Geophys. J. Int., 126, 735–761.

Wenzel, M. J., M. Manga, and A. M. Jellinek (2004), Tharsis as a conse-
quence of Mars’ dichotomy and layered mantle, Geophys. Res. Lett., 31,
L04702, doi:10.1029/2003GL019306.

Widmer, R., G. Masters, and F. Gilbert (1991), Spherically symmetric
attenuation within the Earth from normal mode data, Geophys. J. Int.,
104, 541–553.

Wilhelm, H. (1986), Spheroidal and toroidal stress coefficients, J. Geo-
phys., 59, 16–22.

Wilson, R. E. (1994), Binary-star light-curve models, Publ. Astron. Soc.
Pac., 106, 921–941.

Woolard, E. W. (1944), The secular perturbations of the satellites of Mars,
Astron. J., 51, 33–36.

Wu, P., and W. R. Peltier (1982), Viscous gravitational relaxation, Geophys.
J. R. Astron. Soc., 70, 435–485.

Yoder, C. (1982), Tidal rigidity of Phobos, Icarus, 49, 327–346.
Yoder, C. F., and S. J. Peale (1981), The tides of Io, Icarus, 47, 1–35.
Yoder, C. F., A. S. Konopliv, D. N. Yuan, E. M. Standish, and W. M.
Folkner (2003), Fluid core size of Mars from detection of the solar tide,
Science, 300, 299–303.

Yokoyama, T. (2002), Possible effects of secular resonances in Phobos and
Triton, Planet. Space Sci., 50, 63–77.

Yuan, D. N., W. L. Sjogren, A. S. Konopliv, and A. B. Kucinskas (2001),
The gravity field of Mars: A 75th degree and order model, J. Geophys.
Res., 106, 23,377–23,401.

Zuber, M. T., D. E. Smith, S. C. Solomon, D. O. Muhleman, J. W. Head,
J. B. Garvin, J. B. Abshire, and J. L. Bufton (1992), The Mars
Observer Laser Altimeter investigation, J. Geophys. Res., 97, 7781–
7797.

�����������������������
B. G. Bills, Scripps Institution of Oceanography, La Jolla, CA 92093,

USA. (bbills@ucsd.edu)
G. A. Neumann and D. E. Smith, NASA Goddard Space Flight Center,

Greenbelt, MD 20771, USA.
M. T. Zuber, Massachusetts Institute of Technology, 77 Massachusetts

Avenue, Cambridge, MA 02139, USA.

E07004 BILLS ET AL.: TIDAL DISSIPATION WITHIN MARS

15 of 15

E07004


