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Abstract

Energetic and magnetostrophic balance arguments show that a dynamo source for Mercury’s observed magnetic field is

problematic if one expects an Earth-like partitioning of toroidal and poloidal fields. We perform 3-dimensional numerical

dynamo simulations to determine if a thin shell dynamo geometry for Mercury could produce non-Earth-like magnetic field

partitioning and therefore provide a possible explanation of Mercury’s weak observed dipole signature. We examine the ratio of

the dipole field at the core–mantle boundary to the toroidal field in the core for various shell thicknesses and Rayleigh numbers

and find that some thin shell dynamos can produce magnetic fields with Mercury-like dipolar field intensities. In these

dynamos, the toroidal field is produced more efficiently through differential rotation than the poloidal field is produced through

upwellings interacting with the toroidal field. The poloidal field is also dominated by smaller-scale structure which was not

observable by the Mariner 10 mission, compared to the dipole field.
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1. Introduction

Mariner 10’s observations during the first and third

flybys of Mercury in 1974–1975 revealed the pres-

ence of a magnetic field of internal origin [1,2]. The

inferred magnetic dipole moment of about 300

nT�RM
3 (1RM=2440 km) is not well constrained

due to the spatial distribution and limited quantity of
etters 234 (2005) 27–38
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the data [3], but even with this uncertainty, the

inferred field strength appears problematic for all

typical sources of planetary magnetic fields.

The observed magnetic field strength is much too

large to be explained by induction effects from solar

wind currents on the premise that an induced field

should not be larger than the inducing field. Impact

magnetization is an unlikely candidate since a global

dipolar field would not be the expected resulting

morphology. One possibility is that the dipole field is

due to crustal remanent magnetization from a dynamo

operating in Mercury’s past. If this is the case, then

Mercury’s crustal magnetism is quite different from

that of Earth and Mars where crustal magnetic fields

are short wavelength (i.e. non-dipolar) features.

Runcorn’s theorem [4] showed that a uniform

spherical shell magnetized by an internal field cannot

be the source of the dipole signature, however a planet

is capable of producing a dipole remanent field if

inhomogeneities exist in the magnetized shell. Ste-

phenson [5] and Srnka [6] suggested variations in

magnetic permeability between the shell and free

space or the interior as a possible inhomogeneity, and

more recently, Aharonson et al. [7] showed that

variations in crustal thickness due to laterally varying

external temperature gradients at Mercury could be a

source of inhomogeneity. In both cases, a dipolar field

can be produced from the crustal magnetism, but it is

difficult to reconcile the field’s strength. In order to

explain the field’s intensity, Mercury’s crust must

contain minerals capable of sustaining high specific

magnetizations (similar to the magnetizations needed

to explain Mars’ crustal field), or Mercury’s past

dynamo must have produced a field much more

intense than Earth’s (which is unlikely). Reversals

must also be at a minimum since they diminish the

resultant field strength. Although it appears difficult to

explain Mercury’s field via crustal remanence, this

possibility cannot be ruled out.

The possibility we will consider in the rest of this

study is whether the field could be due to an active

dynamo. Before the field’s discovery, this wasn’t

considered likely since Mercury’s small size sug-

gested the planet should have cooled efficiently and

hence completely frozen its iron core, negating the

possibility of current dynamo action. However, the

recent discovery by the Galileo mission that Gany-

mede has an active dynamo [8] suggests that it may
not be so unusual for a Mercury-size body to possess a

dynamo. Recent Earth-based radar measurements of

Mercury’s librations in longitude [9] have demon-

strated that the core and mantle of Mercury are

decoupled, and hence that the core must be at least

partially fluid. This provides the basic necessary

(although by no means sufficient) condition for an

active dynamo to be the source of the magnetic

observations. What is unknown is whether this fluid

region contains the necessary complex 3-D motions

required to maintain magnetic field generation against

ohmic decay.

Although early thermal evolution models demon-

strated that it is difficult to keep a pure iron core in

Mercury from freezing totally [10], Stevenson et al.

[11] showed that the core can remain at least partially

molten if it contains a small concentration of a light

element such as sulfur. In the models studied,

plausible sulfur concentrations of 1–5% resulted in

thin liquid outer cores surrounding relatively large

solid inner cores. The inner to outer core radius ratios

were in the range 0.74–0.96. These values are much

larger than Earth’s radius ratio of 0.35. Other thermal

evolution models that, in addition to a light element,

also incorporate tidal heating [12], pressure and

temperature dependent rheology [13] and the mag-

matic and tectonic evolution of Mercury [14] show

that outer liquid layers are easily produced for a wide

range of parameter values.

An active dynamo source for Mercury’s field has

been viewed as problematic because of discrepancies

between the observed field’s magnitude and theoret-

ical estimates of the magnetic field strength produced

by an Earth-like dynamo (Earth-like dynamo would

produce a much stronger field than observed).

Because the available typical sources for Mercury’s

magnetic field are problematic, alternatives such as a

thermoelectric dynamo [15,16] have been considered.

Theoretical modeling and Earth-based radar obser-

vations are in agreement that Mercury contains at least

a partially molten core. Although the radar measure-

ments cannot determine the size of the solid inner

core, the thermal evolution models show that a wide

range of inner core radii is possible. The earlier

models favored a relatively large solid inner core, and

although the more recent models have relaxed this

constraint somewhat, they still allow for large solid

inner cores. In this paper we investigate whether
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Mercury’s weak surface magnetic field is the result of

dynamo action in a thin shell geometry. This geometry

is different from the thick shell geometry of Earth’s

core which may lead to differences in the magnetic

fields they produce. We use numerical dynamo

modeling to study thin shell dynamos and examine

whether they can produce magnetic fields capable of

explaining the observations at Mercury.
2. Magnetic field strength expected from a dynamo

There are two independent methods for estimating

the magnetic field strength generated by a dynamo.

The first method (energy balance) involves balancing

the gravitational energy release driving the dynamo

and the ohmic energy dissipated through electrical

currents. Using thermal evolution models for Mercury

to estimate the gravitational energy, magnetic field

strengths on the order of 105–107 nT are obtained

[12,15]. The second method (magnetostrophic bal-

ance) relies on assuming that Mercury’s dynamo

operates in the strong-field regime where the Lorentz

force balances the Coriolis force. This results in an

estimate for the magnetic field of B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2XqReM=r

p
where B is the magnetic field, X is the rotation rate of

the planet, q is density, r is electrical conductivity and

ReM=UL/g is the magnetic Reynolds number (g is

the magnetic diffusivity, U is a typical velocity scale

and L is a typical length scale). Using magnetic

Reynolds numbers on the order of 10–1000 (10 is the

minimum ReM value for dynamo action), we obtain an

estimate for the field strength in the same range as was

found using energetic arguments.

It is possible that Mercury’s dynamo is an denergy
limited dynamoT in which magnetostrophic balance

does not occur [17] and therefore does not provide a

valid estimate for the magnetic field. However in this

case, one must also find a reason to reject the

independent energy balance estimate. Since this

estimate is based on numerical thermal evolution

calculations, which depend on some parameters that

are not well known (such as the concentration of light

element in the core), it may not be unreasonable to

reject this method as well. We however, find comfort

in the fact that both methods produce similar field

values for Mercury and we choose to examine

whether it is possible for a dynamo in magneto-
strophic balance to produce Mercury’s weak dipolar

field.

The magnetic field estimate provided by these two

methods does not immediately conflict with the

observed field value since the estimate is of the field

strength in the fluid core, rather than at some distance

outside the core where the observations are made.

Because the magnetic field is divergence-free

(j d B=0), we can represent the core field in

spherical harmonics using the toroidal–poloidal

decomposition:

B ¼ BT þ BP ¼ j� T r̂r þj� j� Pr̂rð Þ; ð1Þ

where BT and BP are the toroidal and poloidal field

components, respectively, T and P are the toroidal

and poloidal scalars, respectively, and r̂ is a unit

vector in the radial direction. Since the toroidal field

has no radial component, it is not observable outside

the conducting core and only the poloidal field is

measured outside the dynamo generation region. The

magnetic field estimate given by the energy and

magnetostrophic balance arguments pertains to the

combination of the toroidal and poloidal field

components in the core. If the observed dipole

component of the field is downward continued to

the core mantle boundary, then it is not large enough

to satisfy the energy and magnetostrophic balance

estimates. This means that the toroidal field or the

non-dipolar poloidal field in the core must do so.

The dynamo models we present in this paper

maintain magnetostrophic balance through the tor-

oidal field. We therefore use this choice throughout

the rest of this paper. For dynamo models that

maintain magnetostrophic balance via the non-

dipolar poloidal field and have a weaker dipolar

field, see Kutzner and Christensen [18]. Since we

assume the toroidal field maintains magnetostrophic

balance, the dipole poloidal field is not restricted in

magnitude and can be much weaker than the toroidal

field.

The problem arises when one compares the dipole

field strength at Mercury’s core–mantle boundary to

the toroidal field strength in Mercury’s core (esti-

mated using the energy or magnetostrophic balance

arguments). The ratio of these fields is BDip/

BTc10�2–10�4. By carrying out a similar analysis

of Earth’s dynamo, we find BDip/BTc10�1. This is

where a dynamo solution for Mercury’s field
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becomes problematic since it appears that Mercury’s

dynamo produces a much smaller BDip/BT ratio than

Earth’s dynamo and it is unclear why this should be

the case.

We wish to examine whether a thin shell dynamo

could explain the much smaller BDip/BT ratio found

for Mercury. One possibility is that the ratio of

poloidal field to toroidal field in the core (BP/BT)

may be smaller if the generation of toroidal field is

more efficient than the generation of poloidal field.

Another possibility is that the poloidal field may be

dominated by smaller scale structure than the dipole

leading to a smaller BDip/BP ratio. This would imply

that projecting the dipole field observed by Mariner

10 to the CMB does not provide a good estimate for

the CMB poloidal field at Mercury (unlike the Earth

case where it is believed the dipole component at the

CMB does provide a good estimate for the poloidal

field strength there). We examine both of these

possibilities in the following sections.
3. Numerical model

We use the Kuang and Bloxham [19,20] 3-dimen-

sional numerical dynamo model to study magnetic

field generation in a thin, spherical, rotating, Boussi-

nesq, electrically conducting fluid shell surrounding a

solid electrically conducting inner core. By using the

radius of the core (ro) as a length scale, the magnetic

diffusion time (s= ro
2/g where g is the magnetic

diffusivity) as a timescale, a magnetostrophic balance

estimate B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Xq=r

p
as the magnetic field scale and

hTro (where hT is the temperature gradient responsible

for the incoming heat flux at the inner core boundary)

as a temperature scale, we obtain the non-dimensional

equations governing the system:

Ro

�
B

Bt
þ vdj

�
vþ ẑz � v ¼ �jpþ J� B

þ Ra

ð1� rioÞ2
Hr þ Eð1� rioÞ2j2v; ð2Þ

�
B

Bt
�j2

�
B ¼ j� v� Bð Þ; ð3Þ
B

Bt
� qnj

2

�
H ¼ � vdj T0 rð Þ þ HÞ;ð

�
ð4Þ

jd B ¼ 0; ð5Þ

jd v ¼ 0: ð6Þ

Here v, B, H are the velocity, magnetic and

temperature perturbation fields respectively, T0(r) is

a reference temperature state that matches the

boundary conditions and would be present in the

absence of convection, the total temperature

T=T0(r)+H, p is the modified pressure, J is the

current density and ẑ is a unit vector in the direction

of the rotation axis so the rotation vector 6=Xẑ.

The non-dimensional parameters in the above equa-

tions are the magnetic Rossby number Ro, the

Ekman number E, the inner core to total core radius

ratio rio, the Rayleigh number Ra and the magnetic

Prandtl number qn which are given by:

Rou
g

2Xr2o
; ð7Þ

Eu
v

2Xr2o 1� rioð Þ2
; ð8Þ

riou
ri

ro
; ð9Þ

Rau
aTgohTr2oð1� rioÞ2

2Xg
; ð10Þ

qj ¼ j
g
; ð11Þ

where v is the kinematic viscosity, aT is the thermal

expansion coefficient, go is the gravitational accel-

eration at ro, and j is the thermal diffusivity. The

term ro (1� rio) is just the fluid outer core shell

thickness (d = ro�ri) written in terms of our control

parameters. Note that the definition of the Rayleigh

number here is different than is used for example

in mantle convection problems where buoyancy

forces must overcome viscous forces in order to

convect. In core convection, where viscous forces

are small and Coriolis forces are strong, the

buoyancy force must overcome the strong Coriolis



Table 1

Model parameters and results

Model rio Ram BDip/BT

Mean Median Max Min

1 0.35 15,000 1.3 d 10�l 1.2 d 10�l 1.7 d 10�l 1.0 d 10�l

2 0.35 18,000 1.3 d 10�l 1.3 d 10�l 1.7 d 10�l 1.0 d 10�l

3 0.35 24,000 1.5 d 10�l 1.6 d 10�l 2.0 d 10�l 1.1 d 10�l

4 0.7 18,000 1.5 d 10�l 1.5 d 10�l 2.0 d 10�l 1.1 d 10�l

5 0.8 25,000 1.0 d 10�2 1.2 d 10�2 2.3 d 10�2 2.3 d 10�3

6 0.8 30,000 1.9 d 10�2 2.1 d 10�2 5.2 d 10�2 6.7 d 10�3

7 0.8 40,000 7.9 d 10�2 8.3 d 10�2 1.3 d 10�l 4.2 d 10�2

8 0.83 45,000 1.1 d 10�2 1.4 d 10�2 3.2 d 10�2 1.7 d 10�3

9 0.9 60,000 8.7 d 10�2 8.8 d 10�2 1.9 d 10�l 5.6 d 10�2

10 0.9 70,000 8.4 d 10�2 8.3 d 10�2 1.7 d 10�l 5.0 d 10�2

The mean, median, maximum and minimum values of the BDip/BT

ratio over two magnetic diffusion times are given. We use the L2

norm of the energy in the toroidal field as an estimate for BT in the

core. BDip is the dipole moment of the field downward projected to

the core–mantle boundary (0.75 Mercury radii).
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force in order for convection to begin and hence

the Rayleigh number is defined in terms of this

force balance.

We use fixed heat flux boundary conditions on

the temperature, and finite electrically conducting

boundary conditions on the magnetic field. For the

velocity field, we use impenetrable and viscous

stress-free boundary conditions. Although stress-free

boundary conditions are not technically correct for

the problem, we use them for the same reason that

Kuang and Bloxham [19,20] do, namely that since

numerical dynamo models must use Ekman numbers

that are much larger than appropriate for planetary

cores, we decrease the effects of the Ekman

boundary layers in our models by choosing stress-

free boundaries. This choice results in ax numerical

dynamos that have torsional oscillations about a

Taylor state (see Kuang and Bloxham [19]). There

is evidence of torsional oscillations in Earth’s core

[21] suggesting this boundary value choice may

produce dynamos that operate in more of a

planetary-like state, unlike dynamo models with

no-slip boundary conditions, in which the torsional

oscillations are damped out by the strong viscous

forces in the large Ekman layers. In order to work

at highly supercritical Rayleigh numbers (appropri-

ate for planetary cores), we employ similar hyper-

diffusivities as [20]. For more detailed information

on the equations; approximations and numerical

method refer to [20].

Due to our choice of length scale in the non-

dimensionalization, the buoyancy term scales with the

non-dimensional grouping Ra/(1� rio)
2 which we

shall refer to as the modified Rayleigh number

(Ram,) and the viscous term scales with E(1� rio)
2

which we shall refer to as the modified Ekman

number Em. We study only the effects of varying

the inner core radius and modified Rayleigh number

on the solutions and therefore, keep all other

parameters the same for all models. We choose

Ro =Em=2 d 10
�5 and qj =1. With these parameter

choices, the Ekman number will vary between models

with different shell thicknesses, but the modified

Ekman number will remain constant and equal to the

magnetic Rossby number (i.e. the inertial and viscous

terms in the equations scale the same). Our parameter

choice implies that all the Prandtl numbers in the

system are equal to 1.
4. Results

Table 1 lists the control parameters and results of

each model studied. Models (1)–(3) which have an

Earth-like shell thickness, produce average BDip/BT

ratios of about 10�1 which is the same as the

theoretical estimate for Earth’s dynamo. For thinner

shells we observe a more varied behavior. Some

models have average BDip/BT ratios on the order of

10�2 with minimum values on the order of 10�3

(models (5), (6) and (8)) whereas others have average

ratios similar to the Earth-like cases (models (4), (7),

(9), (10)). However, for some of the thinner shells

with Earth-like average ratios (models (8), (10), (11))

we find the range of values obtained over the two

diffusion times is larger than the range of values

exhibited by the models with Earth-like shell thick-

ness (i.e. their ratios are more variable).

The two factors that affect the BDip/BT ratio were

mentioned earlier. Fig. 1 shows that for a numerical

model with small BDip/BT ratio, both the BP/BT and

the BDip/BP ratios are smaller than a numerical model

with Earth-like BDip/BT ratio (we use the L2 norm of

the poloidal field to estimate BP). Although we only

plot the results for two of the models, the results are

representative of all our models in Table 1. Both of

these effects contribute a factor of order 10�l to the

BDip/BT ratio resulting in ratios on the order of 10�2.

It therefore appears that thin shell dynamos are both
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less efficient at producing poloidal field from toroidal

field and produce smaller scale poloidal field than

Earth-like models. This may not be a coincidence

since perhaps poorly generated poloidal field naturally

results in smaller scale structure.
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Fig. 2. Non-dimensional magnetic energy components as a function

of time for model (6). The axisymmetric (red), non-axisymmetric

(blue) and total (green) energy for the poloidal (top) and toroidal

(bottom) fields are shown. Time is given in units of magnetic

diffusion time and the energy is plotted on a log scale.
The three models with smaller BDip/BT ratios also

share other similar characteristics (and differences

from models with larger BDip/BT ratios). We begin by

examining the energy in the fields which is defined in

terms of the non-dimensional mean square field

intensity:

E ¼ EBT þ EBP ¼
Z
v

jBTj2dV þ
Z
v

jBPj2dV ; ð12Þ

where EBT and EBP are the energy in the toroidal and

poloidal fields, respectively, and V is the non-dimen-

sional volume of the fluid outer core. In Figs. 2 and 3
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(blue) and (7) (red). Time is given in units of magnetic diffusion

time and dipole offset is in units of planetary radii.
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we compare the partitioning of poloidal and toroidal

energy in the core into axisymmetric and non-

axisymmetric components for models (6) and (7),

respectively. These models have the same rio value

but model (6) has a small BDip/BT ratio and model (7)

has an Earth-like BDip/BT ratio. The model with

smaller BDip/BT ratio has a poloidal energy dominated

by the non-axisymmetric component and toroidal

energy dominated by the axisymmetric component.

In contrast, the Earth-like BDip/BT ratio model has

both poloidal and toroidal energy dominated by the

axisymmetric component. The dominant axisymmet-

ric toroidal energy in both models is not surprising
Fig. 5. Axisymmetric magnetic field at one instant in time for models (2) (a

in the left half and streamlines of the poloidal field are shown in the ri

directions. The gray shell is the fluid core, the inner white region is the soli

line represents the rotation axis.
since it is generated through the shearing action of

differential rotation which is present in both cases.

The difference in poloidal energy dominance suggests

that the mechanism generating poloidal field behaves

differently in the two models. The non-dimensional-

ization of magnetic field in our model implies that

when |B| =1, the ratio of Lorentz to Coriolis forces is 1

(in other words the Elsasser number K =1). Figs. 2

and 3 therefore also demonstrate that our models are

in the magnetostrophic balance regime where

K~O(1).

Another characteristic we can compare is eccen-

tric dipole models. Fig. 4 plots the eccentric dipole
), (4) (b), (7) (c) and (9) (d). Contours of the toroidal field are shown

ght half of the plots. The different colors represent different field

d inner core, the thick black circle is the CMB and the black vertical



Fig. 6. Same as Fig. 5 but for model (6).
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tilts and offsets for models (1), (5) and (7). The

model with small BDip/BT ratio experiences larger

variations in dipole tilt and offset than the thin shell

model with Earth-like BDip/BT ratio and the thick-shell

Earth-like model. These results are characteristics of

the other models in Table 1 that have similar BDip/BT

ratios. The larger eccentric dipole tilts and offsets of

models with small BDip/BT ratio do not only occur

during reversals (as the one shown in Fig. 4), but also

during times of stable polarity direction. Only two of

the three small BDip/BT ratio models in Table 1

underwent a reversal at some point during the two

diffusion times studied, however all three demonstra-

ted similar variability in dipole tilt and offset when not

reversing.

Although some of the thin shell models produce

Earth-like BDip/BT ratios, there are differences

between the fields generated by these dynamos and

thick shell dynamos. Fig. 5 compares the axisym-

metric toroidal and poloidal fields in models with

various shell thicknesses, but Earth-like BDip/BT

ratios. The dominant pattern of toroidal magnetic

field changes as the shell thickness varies. The thick-

shell model in Fig. 5a is dominated by a spherical

harmonic degree 2 pattern which remains relatively

stable in time. In contrast, the very thin-shell model

in Fig. 5d is dominated by a degree 4 pattern in both

the time-averaged field and at the time step shown,

however this model can also display a more complex

toroidal field with contributions from multiple

spherical harmonic degrees at certain times. For

intermediate shell thicknesses (Fig. 5b, c) the pattern

appears to be going through a transition between the

two states and therefore contains more complicated

structure with significant contributions from both

degree 2 and 4 components. The change to higher-

degree (smaller scale) structure as the shell thickness

decreases is perhaps not surprising since a length-

scale in the problem is becoming smaller, however it

is interesting that these different toroidal field

morphologies still produce a dominant dipolar

poloidal field.

We can also compare model (7)’s axisymmetric

magnetic field (Fig. 5c) to that of model (6) (Fig. 6),

which has the same shell thickness but a small

BDip/BT ratio. Although the shell thickness is the

same, the toroidal field patterns in these models are

different. In model (6) the axisymmetric toroidal
field is concentrated inside the tangent cylinder

whereas in model (7) the toroidal field is found

throughout the fluid core.
5. Discussion

The purpose of this study was to determine the

existence of numerical dynamos with non-Earth-like

BDip/BT ratios, and this was accomplished, but our

search of parameter space was not complete enough to

determine the specific dependence of the BDip/BT ratio

on shell thickness and modified Rayleigh number. We

do however, observe some trends that will be

verifiable once a further study of parameter space

has been conducted.

Models (5)–(7) have the same inner core radius

(rio=0.8) but different modified Rayleigh numbers.

The results suggest that lower modified Rayleigh

numbers are able to produce fields with smaller

BDip/BT ratios. When we lowered the modified

Rayleigh number to Ram=20000 for the same shell

thickness, the strong field dynamo solution died.

This suggests that modified Rayleigh numbers in a

limited region near the lower boundary for strong

field dynamo action in our numerical models can

produce smaller BDip/BT ratios. In future work we

will examine whether this trend prevails at other

inner core radii. The two models with rio=0.9

(models (9) and (10)) produce Earth-like ratios at
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their modified Rayleigh numbers. In a model with

the same inner core radius and Ram=30000 we

found the strong-field dynamo died. If dynamos

operating at this shell thickness can produce smaller

BDip/BT ratios, our results from the rio=0.8 case

suggest it will occur somewhere in the Ram range of

30000–60000. This trend does not appear to occur

for Earth-like shell thicknesses since model (1)

which has an Earth-like BDip/BT ratio has a

modified Rayleigh number very close to the critical

value for strong field dynamo action [20]. This

suggests that the field partitioning has a dependence

on shell thickness as well as on modified Rayleigh

number. Determining the critical shell thickness for

which this trend begins to appear will be the goal of

future parameter space searches.

Now that the existence of numerical dynamos

with Mercury-like BDip/BT ratios has been estab-

lished, we examine the cause of this different field

morphology. As a consequence of the Proudman-

Taylor theorem [22,23], the convection pattern in a

spherical rapidly rotating shell is dominated by 2-

dimensional columnar rolls [24,25] that form

parallel to the rotation axis outside the tangent

cylinder (cylinder coaxial with rotation axis and

tangent to the inner core boundary). Convection

inside the tangent cylinder is more difficult since

the geometry requires the complex 3-D motions that

transfer heat from the inner core boundary to the

CMB to break the 2-dimensionality imposed by the

Proudman-Taylor theorem. In a thick shell geome-

try, these convection columns are an efficient means

of producing poloidal magnetic field from toroidal

field since the region outside the tangent cylinder

occupies a large fraction of the fluid core’s volume

and the toroidal field is present throughout this

region. However, as the shell thickness decreases,

the region outside the tangent cylinder occupies a

smaller ratio of the total volume and therefore, the

convective motions outside the tangent cylinder do

not interact as efficiently with the toroidal field

which is present in the entire fluid shell. The ratio

of magnetic field generation to dissipation is given

by the magnetic Reynolds number (ReM). As the

shell thickness decreases, the velocity (i.e. the

convective vigor) must increase in order to maintain

the same level of field generation (same ReM). One

might expect that at a certain shell thickness, the
Rayleigh numbers required to maintain strong field

dynamo action outside the tangent cylinder may be

similar to those for the onset of dynamo action

inside the tangent cylinder.

We can now provide a possible explanation for

both the shell thickness and Rayleigh number

dependencies seen in our models. The toroidal field

is generated efficiently in both thick and thin shells

through differential rotation (x effect). The poloidal

field is generated when upwellings from convection

produce poloidal field from toroidal field (macro-

scopic a effect). In our numerical thick shell

dynamos these processes result in a BDip/BT ratio

of about 10�l. As the shell thickness decreases,

columnar convection becomes less efficient at

producing poloidal field from toroidal field because

the columns occur in a limited region outside the

tangent cylinder. We obtain dynamos with small

BDip/BT ratios in the parameter regime when

convection outside the tangent cylinder is not

efficient at producing poloidal field (i.e. thin shells)

and the modified Rayleigh number is low enough

that convection inside the tangent cylinder does not

efficiently produce poloidal field. We obtain Earth-

like BDip/BT ratios in thin shell geometries when

the Rayleigh number is large enough that con-

vection inside the tangent cylinder is capable of

producing a strong poloidal field from the strong

toroidal field there. This is why models (5) and (6)

have small BDip/BT ratios whereas model (7), which

has the same shell thickness but larger modified

Rayleigh number, has an Earth-like BDip/BT ratio.

Small BDip/BT ratios may no longer occur in dynamos

when the shell thickness is small enough that either

convection outside the tangent cylinder alone is not

efficient enough to produce dynamo action (can’t get

to critical ReM), or dynamo action inside and outside

the tangent cylinder occur at similar critical Rayleigh

numbers. At this point the convection inside the

tangent cylinder will be an efficient means of

producing poloidal field and Earth-like BDip/BT ratios

will result. A sketch of these different scenarios is

shown in Fig. 7.

We see evidence of this process occurring in our

dynamo models. In Figs. 8 and 9 we show the non-

axisymmetric component of the axial vorticity of

the fluid flow in slices parallel to the equator for

models (5) and (7), respectively. The slices in the



(a)

(b)

(c)

Fig. 8. The axial vorticity of the non-axisymmetric poloidal velocity

field in slices parallel to the equatorial plane for model (5). A slice

through the equatorial plane is shown in (a), a slice through a plane

parallel to the equator at a height of 0.4 ro, is shown in (b) and at a

height of 0.7 ro is shown in (c). The color scale is the same in al

plots to give an idea of differences in magnitude. The contour lines

scale differently between plots to give a better idea of structure in

each plot.

(a) (b)

(c) (d)

Fig. 7. Sketch of theoretical convective flow patterns in meridional

slices for models with varying shell thicknesses. The black and

green lines represent the rotation axis and tangent cylinder

respectively, gray regions are the fluid outer core and inner white

regions are the solid inner core. A thick shell geometry (a) has a

convection pattern dominated by columnar rolls (red cylinders) that

form near the tangent cylinder. This form of convection is efficient

at generating poloidal dipolar field and produces Earth-like BDip/BT

ratios. As shell thickness decreases, the convection columns become

shorter and move to regions of higher boundary slope. If the

Rayleigh number is low enough so that convection does not occur

inside the tangent cylinder, then these rolls are not efficient at

converting toroidal field to poloidal dipole field (b) and these

dynamos can produce smaller BDip/BT ratios. At similar shell

thicknesses but higher Rayleigh numbers, convection inside the

tangent cylinder is more efficient at producing poloidal dipole field

(c) causing Earth-like BDip/BT ratios. Eventually a shell thickness

may be reached where convection inside and outside the tangent

cylinder begin at similar critical Rayleigh numbers, eliminating the

small BDip/BT ratio regime (d).
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equatorial plane (part (a) in both figures) contain

similar convection patterns occurring outside the

tangent cylinder, however model (7) convects more

vigorously as expected since the modified Rayleigh
number is larger in this model. In part (b) of both

figures, we plot the convection pattern in a plane

parallel to the equatorial plane at a height of z =0.4ro.
l



(a)

(b)

(c)

Fig. 9. Same as Fig. 8 but for model (7). The color scale in the

figure is also the same as in Fig. 8 in order to compare intensities

between models.
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Here we see that model (7) has much stronger, smaller

scale convection patterns than model (5). In part (c) of

both figures, the convection pattern in a plane parallel

to the equator at a height of z =0.7ro is shown. In

model (5) at lower Rayleigh number (Fig. 8),

convection is weak or absent inside the tangent

cylinder whereas at higher Rayleigh number (Fig.
9), we see the stronger convection patterns inside the

tangent cylinder.
6. Conclusions

We have demonstrated that dynamos operating in

thin shells can produce a variety of behaviors not seen

in thick-shell dynamos. Further study of this geometry

is necessary for understanding the magnetic field

generation process in planets and may be relevant for

Mercury as well as Ganymede and perhaps Mars’ past

dynamo. Al-Shamali et al. [26] have recently

performed numerical studies of the onset of convec-

tion in thin shells and Aurnou et al. [27] have

performed experiments on convection patterns inside

the tangent cylinder. Both of these forms of study,

along with numerical dynamo studies will be impor-

tant in understanding dynamo generation in thin

shells. In future work we will explore more of

parameter space in our numerical models to determine

the dependence of this new field morphology on the

governing parameters.

This first study has shown that a dynamo

solution for Mercury’s magnetic field is possible

since thin shell dynamos can produce fields with

Mercury-like partitioning of toroidal and poloidal

fields, however, it does not rule out crustal magnet-

ization or a thermoelectric dynamo as the source of

Mercury’s field. Future measurements of Mercury’s

magnetic field by the MESSENGER and Bepi-

Colombo missions may help to resolve the issue. If

any field variability in time is observed, then the

dynamo source will prove correct. If the field

structure is correlated with gravity signatures indi-

cating topography at the core–mantle boundary then

a thermoelectric dynamo will be the most likely

answer. Any small-scale structure with shallow

source depths is crustal in origin. If no time-

variation is detected this does not mean the field

is not dynamo generated, just that the timescale of

secular variation is longer than the length of time

the observations are carried out. Determining

whether the field is crustal or dynamo generated

in this case may be possible if evidence of an effect

due to the tangent cylinder is seen. If the character

of the magnetic field is different inside and outside

the tangent cylinder (due to different convection
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patterns in these regions) then a dynamo source for

the field may be the answer.
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