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Flow and convective cooling in lava tubes 
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Abstract. Tube-fed basaltic lava flows with lengths ranging from 10 to 200 km are inferred to 
exhibit similar amounts of cooling. To explain the wide range of implied cooling rates, we 
consider forced convection as a dominant cooling process in lava tubes and present solutions that 
express mean temperature versus distance down the tube as a function of flow rate and flow cross 
section. Our models treat forced convective thermal losses in steady laminar flow through a lava 
tube with constant temperature walls and constant material properties. We explore the effects of 
different wall temperature and heat flux rate boundary conditions for circular tube and parallel plate 
flows over a range of tube sizes, plate spacings, eruption temperatures, and volume flow rates. 
Results show that nonlinear cooling rates over distance are characteristic of constant wall 
temperature for a piecewise parallel plate/circular tube model. This provides the best fit to 
temperature observations for Hawaiian tubes. Such a model may also provide an explanation for 
the very low (-10øC) cooling observed in -10 km long Hawaii tube flows and inferred in longer 
-50 to 150 km tube-fed flows in Queensland. The forced convective cooling model may also 
explain similar flow morphologies for long tube-fed basaltic lava flows in a wide variety of 
locations, since small variations in eruption temperature or flow rate can accommodate the entire 
range of flow lengths and cooling rates considered. Our results are consistent with previous 
suggestions that long basaltic flows may be a reflection of low slopes, a particularly steady 
moderate eruption rate, and well-insulated flow, rather than of high discharge rates. 

1. Introduction 

Lava tubes are a primary mode of lava emplacement in 
basaltic volcanism and have fed many of the longest lava flows 
[Malin, 1980], as well as contributing substantially to 
resurfacing of basaltic shield and plains volcanism terrains 
[e.g., Greeley, 1987; Holcornb, 1987; Hon et al., 1994]. In 
addition, tube flows are responsible for feeding extensive 
inflated sheet flows in Hawaii [e.g., Hon et al., 1994; 
Kauahikaua, 1996], and they have played an important role in 
the eraplacement of the Columbia River Basalts [Self et al., 
1996] and other flows. The longest recognized subaerial flows 
on Earth [e.g., Atkinson et al., 1975] as well as the longest 
North American basaltic flows (outside of the Columbia River 
Basalts) are though to be tube or tube-fed flows. These include 
the long (> 50 km) Carey and Grassy Cone flows of the Craters 
of the Moon lava field [Kuntz et al., 1982, 1992], the 60 km 
long Shoshone lava field [Kuntz et al. 1992] on the Snake 
River Plain, the New Mexico 60 km McCartys flow and 90 km 
Fence Lake flow in the Zuni-Bandera field [Thedig, 1990a], the 
42 km long Lucero field [Baldridge, 1990], and the >70 km 
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long Carrizozo field [Thedig, 1990b; Keszthelyi, 1995], as 
well as the 46 km Indian Heaven flow field in Oregon 
[Hammond, 1990]. The collapse pit chains characteristic of 
drained lava tubes are common on Hawaiian volcanoes, 
Medicine Lake volcano in California [Waters et al., 1990; 
Donnelly-Nolan, 1992], within the Snake River Plains basalt 
flows [Greeley, 1977, 1982], and in near-vent Undara volcano 
flows [e.g., Atkinson et al., 1975]. Morphologically similar 
features have been reported in association with volcanic flows 
on Mars and Venus [e.g., Cart, 1981; Hodges and Moore, 
1992; Head et al., 1992]. On low slopes, lava tubes are 
unlikely to drain and leave caves and collapse pit chains, but 
evidence for flow inflation, the presence of minimal cooling 
over the flow length, and an apparent concentration of flow 
within the interior relative to the exterior often can indicate 

the presence of a tube or tube network that fed a lava flow 
[Cashman et al., 1993; Hon et al., 1994; Cashman et al., 
1994; Kauahikaua, 1996]. 

Lava tube flow temperature measurements contain 
information on the nature of the cooling processes that operate 
within the tube. Different temperature distributions are 
predicted for constant or variable heat flux rates along the tube 
as well as thermal mixing or boundary layer formation within 
the flowing lava. Measurements of cooling rate with distance 
from the vent will help to identify the relative importance of 
different cooling processes, as will the knowledge of the 
temperature distributions across the flow, along the flow, and 
at the wall/lava boundary. 

Previous data for lava tube temperatures include a handful of 
papers where the total temperature drop along the tube is 
reported [e.g., Swanson, 1973; Helz et al., 1991], and prior 
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Figure 1. Temperature data for lava tube samples for the 
Waha'ula and Kamoamoa tubes [Cashman et al., 1994, Tables 
1 and 2]. Absolute temperature error bars are +_5øC, but relative 
errors are less. Diamonds indicate samples from tube 
skylights, triangles indicate breakout samples, and circles 
indicate samples from coastal spatter at the tube exit. Solid 
bars are eruption temperatures from Helz et al. [ 1991 ]. 

knowledge of the cooling rates and modeling efforts primarily 
tried to match the approximately 10øC drop over 10 km 
previously noted for Hawaiian East Rift Zone flows [Swanson, 
1973; Helz et al., 1991; Keszthelyi, 1995]. More recent data 
(C. Thornber, personal communication, 1997) shows a wider 
range of cooling rates (0.5 ø to løC/km), and Cashman et al. 
[1994, Tables 1 and 2] includes lava tube temperatures based on 
the Helz and Thornber [1987] glass geothermometry method 
for samples from skylights, breakouts, and ocean-entry tube 
spatter. Figure 1 is a plot of the Cashman et al. [1994] 
temperature data as a function of distance down the tube. The 
data are for the Waha'ula tube Episode 48 eruption from the 
Kupaianaha vent and the Kamoamoa tube Episode 53 eruption 
from the Pu'u 'O'o vent. The error bars on the temperatures are 
+5øC, but the relative temperatures are consistent since there 
are no MgO content reversals (K.V. Cashman, personal 
communication, 1997). Helz et al. [1991] reported glass 
geothermometry eruption temperatures for the Kupaianaha vent 
of 1158-1161øC, which includes Episode 53. The Pu'u 'O'o 
eruption temperatures reported by Helz et al. do not include 
Episode 48 and are assumed to be 1162-1168 ø as in previous 
Pu'u 'O'o Episodes [Helz et al., 1991]. The data in Figure 1 
show that the highest cooling rates are near the tube entrances, 
as would be expected for a predominantly convective cooling 
regime, where the wall temperature has stabilized to a constant 
temperature [Sakimoto and Zuber, 1996]. Tube cooling models 
that consider constant heat flux rates over the tubes or tube 

segments (e.g., Keszthelyi [1995] and the constant heat flux 
models of this study) result in a linear or piecewise linear 
decrease of temperature over distance that is dependent on 
slope and tube size rather than flow rate and aspect ratio. While 
Keszthelyi's [1995] models are compatible with the 

approximately løC/km cooling noted above, the predicted 
linear cooling rates are not compatible with observed 
nonlinear cooling rates [Cashman et al., 1994] (Figure 1) or 
for explaining the lengths of much longer terrestrial tube flows 
that have been emplaced in seemingly similar circumstances. 

This study considers several convective cooling models that 
predict thermal losses in steady, hydrodynamically developed, 
thermally developing laminar flow through a lava tube with 
either constant temperature walls or constant heat flux at the 
walls for a flow with constant material properties. We explore 
the effects of different wall temperatures or heat flux rates for 
circular tube and parallel plate flows over a range of tube sizes, 
plate spacing, eruption temperatures, and volume flow rates. 
Since the recent temperature data are the result of glass 
geothermometry analysis of tube samples, we have shown the 
model results in terms of mean bulk temperature versus distance 
so that the differences in cooling rates over distance are 
apparent and can be plotted with the temperature data. The 
mean bulk temperature is used since the glass geothermometry 
sampling technique often consists of dropping a cable into the 
tube flow at a skylight and pulling back out the cable and the 
lava that has collected around the sampling end of the cable. 
This will tend to produce a sample that is somewhat mixed 
since it passes through the boundary layer, into the flow 
center, and back through the boundary layer with probable 
accretion of the flow material onto the sample throughout the 
process. Some of the variations in the data in Figure 1 will be 
due to the sample retrieval techniques, rather than to the 
sample analyses techniques, since the retrieval methods are 
likely to be sampling a slightly different version of the 
thermal cross section at each location and retrieval. 

2. Approach 

2}1. Assumptions 
We assume incompressible laminar flow throughout this 

analysis. This assumption is observation-driven, since we 
have no documented cases of fully turbulent lava flow. For 
circular cross sections and smooth pipes, the flow becomes 
unstable at Re = 2000 and fully turbulent at Re = 4000 [e.g., 
White, 1991]. Figure 2 shows Re as a function of tube radius, 
flow viscosity, and flow rate. At these tube sizes and moderate 
flow rates, the flow is expected to be laminar. However, it 
should be noted that for thermal reasons discussed later, we 

have approximated a partially filled tube as a parallel plate 
flow but that for this geometry, the critical Reynolds number is 
500 [e.g., Chow, 1959]. Consequently, the thermal models 
given here will not be appropriate for channel-type flows for 
larger Re. This may make a difference for some large flows in 
partially full tubes. Incompressible flow is an important 
simplifying assumption, although there is evidence for 
changes in vesicularity along the path of the flow [Swanson 
and Fabbi, 1973; Cashman et al., 1994]. 

The flow is assumed to be Newtonian, hydrodynamically 
developed, and thermally developing, so that the velocity 
profile is parabolic and the thermal boundary layer is growing. 
For laminar flow, it will take at most 100 diameters to 

establish and develop the velocity boundary layer and a 
parabolic velocity profile [see White, 1991] and substantially 
less for most lava tubes [Sakimoto et al., 1997]. However, 
basalt is not particularly conductive, so the thermal boundary 
layer grows very slowly and the thermal entry length is very 
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Figure 2. Reynolds number (Re) versus lava tube radius for flow rates of 1, 10, and 100 m3/s. Contours are in 
viscosity in Pa s, and the transitional and turbulent flow regimes are shaded. For moderate flow rates and 
basaltic viscosities, the flows are within the laminar regime. 

long. For example, using the thermal entrance length 
expression in Table 1, as well as the laminar flow, and heat 
capacity and thermal conductivity values in Table 1, the 
thermal entrance length in tube diameters is 46 R ela or, for 
laminar flow, up to 92,300•t, where •t is the dynamic viscosity 
in Pa s So, for a viscosity of 1000 Pa s, and a tube diameter of 1 
m, the thermal entry length for l<Re<2000 would be between 
46 km and 92,000 km, which ensures that we are always 
dealing with thermally developing flow. Physically, this 
yields a hot flow center with a constant temperature flow center 
through the thermal entrance length (dT/dz = 0 at r = 0) and a 

Table 1. Parameters, Notation, Assumed Values, and Units 

Parameter Notation Value a Units 

Tube radius a m 
Tube diameter D 2a m 

Plate spacing 2d m 
Flow width w m 
Radial coordinate r m 
for tube flows 

Height coordinate for y m 
parallel plate flows 

Length coordinate for z m 
tube and plate 
flows 

Characteristic D c D or 2d m 
dimension 

Cross-section area A •a 2 or 2dw m • 
Wetted perimeter P •D or 

2w for w>>d 

Hydraulic diameter D n D n = 4AlP m 
Density p 2600 k m '3 Thermal conductivity k 1.3 J m :'• s '1 K '1 
Specific heat capacity •e 1200 J kg '1 K '1 Entrance temperature øC 
Wall temperature T w øC 
Mean bulk fluid T m øC 

temperature 
Wall heat flux qw Wm'2 
Hydrodynamic Ln• 0.05DRe m 

entrance length 
Thermal entrance L• O.05RePrD m 

length 

a If no value is assigned, parameter is different for each tube and/or 
solution (see Table 3). 

thermal boundary layer that grows as a function of distance 
down the tube. If the flow is still within the hydrodynamic 
entrance length, there can be up to 10% error in flow rates due 
to applying the driving force flow calculation to partially 
developed flow [Sakirnoto et al., 1997]. Since the thermal 
solutions are moderately sensitive to flow rate variations, this 
error can affect the predicted temperatures but is not likely to 
change the model results within the current error bars of 
available temperature measurements. 

Steady flow is assumed, since tube formation is most likely 
in eruptions with steady eruption rates and durations of more 
than a few days [e.g., Peterson et al., 1994]. Additionally, the 
boundary between the fluid and the tube wall is assumed to be 
no slip, since observed tube flows often have a noticeable 
velocity gradient between the tube center and the tube wall. 

In a full lava tube in thermally undeveloped flow, the 
temperature is at a maximum at the tube center and decreases 
radially outward to the walls. Both the circular tube and the 
parallel plate convective cooling models used here assume 
either a constant wall temperature or a constant wall heat flux. 
For the constant temperature boundary condition, we have 
assumed that the tube wall location will reach an equilibrium at 
a constant temperature Tw and that Tw is 1077øC, the 
temperature at which Kilauea basaltic lava is approximately 
55% crystallized [cf. Marsh, 1981]. Since T w varies with 
composition, it should be adjusted to reflect any available 
crystallinity versus temperature data if this model is used on 
other flows. At T<Tw the lava has a sufficient interlocking 
crystalline network to behave as a brittle solid and thus cannot 
be incorporated into the flow by shear forces from the flowing 
lava. If the temperature at the wall increases above this 
significantly, the wall will become less viscous and 
susceptible to thermomechanical erosion, and if the 
temperature decreases significantly, either the heat flux from 
the flow will reheat it or the wall location will migrate inwards 
toward the tube center. This 55% crystallinity temperature (or 
something similar) seems a reasonable assumption for tubes 
that develop as a flow concentration within a large sheet flow 
[e.g., Hon et al., 1994], where the wall temperature should be 
that of the material that has cooled and is too viscous to flow 

easily. It should also be reasonable for long-lived tubes that 
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have heated the surrounding rock or tubes that are 
thermomechanically eroding their base and/or walls. For small 
tubes or low flow rates, the shear forces from the flow may not 
be large, and T w could be higher. Numerical simulations with 
temperature- and shear rate-dependent viscosities suggest that 
T w could be as high as 1130øC [Sakimoto, 1995b, also, 
unpublished data, 1997], near the point encountered in cooling 
where the suspended crystals begin to interact and the 
viscosity undergoes a large increase. For most cases, we have 
assumed Tw=1077øC, but several of the models have been 
evaluated with both Tw =1077 ø and T w =1130øC for comparison. 

This problem is essentially a conductive cooling problem 
with conductive heat flow both within the fluid and across the 

fluid wall interface. The heat flux rates in conductive cooling 
are functions of the thermal conductivity of the material and of 
the temperature difference across the zone of heat transfer. 
Since we have assumed constant properties, and the same 
thermal conductivity for the fluid and solid basalt, the 
temperature gradients determine the location of the slowest or 
limiting heat transfer rate. Within the tube, the difference 
between the eruption and wall temperatures ranges from 30 ø to 
100øC, while outside the tube, the temperature decreases from 
the wall temperature of 1077 ø to ambient surface temperatures 
of--30øC. The temperature difference between the tube wall and 
ambient conditions is then an order of magnitude larger than 
the temperature difference between the flow center and the tube 
wall. This suggests that the limiting process in the cooling is 
the heat transfer within the flow to the tube walls and that any 
heat transferred to the walls can be conducted (or convected or 

radiated [see Keszthelyi, 1995]) away as fast as it is delivered. 
The temperature distribution within the tube will then control 
the cooling of the tube, and external conditions (other than the 
wall temperature) will have little or no effect. Consequently, 
the factors that are most important in controlling the internal 
tube temperature distribution (the flow rate, distance down the 
tube, and the shape of the cross section of the flow) will 
control the cooling in this study. 

Since we have argued for an equilibrium wall temperature as 
the most reasonable boundary condition, the constant wall 
heat flux models are presented primarily for comparison here. 
We have used a range of wall heat flux values that includes 
those proposed in previous work [Hardee, 1983, 1993; 
Realmuto et al., 1992; Keszthelyi, 1995]. 

For a full tube, the boundary conditions of a constant wall 
temperature are clear. For a partially full tube, there is the 
complication of the tube atmosphere filling the tube cavity. 
This cavity above the lava will act as a blackbody region with 
nearly uniform internal temperature of the gas, top surface of 
the flow, and wall surface. There has not been a quantitative 
assessment of the effect of heat transport in the void above a 
partially full tube, and such a study is much needed. For this 
analysis we assume that the radiative losses of the top flow 
surface will cool it to a temperature below that of the flow 
interior. We have assumed that this temperature is equal to T w , 
so that the thermal boundaries of the tube flow are symmetrical 
and, as for the full tube, the flow rate, distance down the tube, 
and the shape of the cross section of the flow will control 
cooling. Important considerations thus include the geometry 
of the cross section as well as flow rate. Rather than present a 
host of solutions, one for each potential tube geometry, we 
consider circular tube flow and parallel plate flow, which are 
straightforward to set up and calculate, and can act as end 
members for a range of tube geometries. For more accurate 

Table 2. Dimensionless Parameters 

Parameter Notation Expres sion 

Dimensionless axial z* 
distance 

Dimensionless fluid 0 m 
bulk mean 

temperature 
Dimensionless fluid 0 

temperature 

Reynolds number Re 

Nusselt number Nu 
Prandtl number Pr 

Peclet number Pe 

Local Nusselt number NUz, t, c 
Mean Nusselt number Num. t, c 

a Nu is a function of dimensionless distance and varies with the flow 

geometry. The subscript bc is a place holder for the boundary condition. 

work once more detailed temperature and tube geometry data are 
available, solutions for a variety of cross section geometries 
are tabulated in the literature [e.g., Shah and London, 1978]. 

So, for steady laminar flow in a tube with constant 
temperature walls, the temperature distributions within the tube 
are known to be a function of the dimensionless distance down 

the tube z* = Z/DhRePr (see Shah and London [1978] and 
Tables 1 and 2 for variable definitions). When we use flow rates 
for problem input, instead of a mean velocity, the 
dimensionless distance is z* = (zPk)/(4pDcQCp), where z is 
the distance from the tube entrance, P is the "wetted perimeter" 
[cf. White, 1991], Dc is a length characteristic of the geometry 
(e.g., the tube diameter or plate spacing), and Q is the volume 
flow rate. Since for this study, the thermal conductivity k, flow 
density p, and heat capacity Cp are considered to be constant, 
cooling is a function of z, P, D•, and Q. From this it is clear 
that once we stipulate the flow rate and distance down the tube, 
the remaining consideration is the geometry in terms of P/D•. 
For full, circular, tubes, P/D• is simply • and we can use the 
classic circular pipe Griitz type of solution (see the appendix), 
and there is no diameter dependence in the cooling. This 
diameter independence is a direct result of defining the model in 
terms of flow rate instead of average velocity and tube 
diameter. For other geometries, there will be some type of 
geometry dependence, and the cooling solution dynamically 
closest to the problem will be that with the closest P/D•. The 
larger the value of P/Dc , the greater the cooling will be 
relative to the circular tube case. 

For example, consider a full rectangular tube with a flow 
depth of 1 m and a flow width of 3 m. The ratio P/D• is 8. 
Using a circular tube solution where P/D• = • is likely to 
underestimate the cooling, but a parallel plate solution, where 
P/D• = 6, is a closer match. Numerical simulations confirm 
that for even this 3:1 aspect ratio, the parallel plate solution 
accounts for -- 80% of the heat lost in the full rectangular 
solution, whereas the circular tube solution predicts heat losses 
somewhat less than half the actual losses. As aspect ratios 
increase, the heat lost through the side walls decreases relative 
to the heat lost through the top and bottom walls, and the 
parallel plate solution becomes an increasingly good 
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approximation. As the aspect ratio approaches 1:1, the heat 
flow from the constant wall temperature parallel plate solution 
approaches approximately 2/3 that of a round tube with a 
diameter equal to the plate spacing. For aspect ratios greater 
than 10:1, the difference is usually less than 10%. Knowing 
that the parallel plate solution underestimates the cooling 
losses, we have compensated somewhat by using the higher 
estimates of flow aspect ratio where there is a range reported. 
For flows where we have few or no constraints on the aspect 
ratio of the flow cross section, we have used the same values as 

in previous flows to allow a direct comparison of the predicted 
cooling rates. In general, these model results apply both to the 
simple shapes assumed as well as to a range of irregular shapes 
that have equivalent heat loss characteristics (P/D c , material 
properties, thermal boundary conditions, and flow rate). 

The convective cooling models presented here include the 
implicit assumption that the flow is not thoroughly mixed 
after it enters the lava tube. Such a remixing would eradicate the 
thermal boundary layer, and restart its growth, with 
commensurably higher cooling losses. If lava within the entire 
tube is in continuous slow laminar flow, then the assumption 
is reasonable. However, the presence of large abrupt tube size 
or slope changes will lead to locally higher cooling losses as 
the thermal boundary layer is reestablished, and our models 
will underestimate cooling rates unless they are applied to each 
section of the tube after remixing. From the agreement of the 
tube temperature data with the model prediction for the 
Hawaiian tubes in this study, this appears to be a reasonable 
assumption. Assuming complete remixing at each of the 
sections reported for the Waha'ula tube by Keszthelyi [1995] 
resulted in predicted cooling rates that were twice as large as 
those observed. 

We have also assumed that there is no long-term lava-water 
(or permafrost) interaction of a large enough magnitude to 
influence the cooling rates. However, if extended interaction 
between the lava and water was present, as might be the case 
for a submarine flow, it may be reasonable to use this type of 
convective cooling model with an adjusted (higher) constant 
heat flux boundary condition. For the Queensland flows, which 
were erupted in the dry season, and the Mars flows, which 
presumably erupted onto a dry surface, this is probably a very 
good assumption. The effects of cooling by rainfall on the 
Hawaiian flows are not as clear. Keszthelyi [1995] suggests 
that the effects of rainfall are not insignificant, but the 
analysis is a simple one that depended primarily on the 
diameter of the 100øC isotherm surrounding the lava tube. The 
study predicts that the bigger the isotherm diameter, the more 
important will be the rainfall effects, and the higher will be the 
cooling rate. This prediction ignores the significant 
consideration of the proximity of the isotherm to the lava tube 
and the implied temperature gradient in the surrounding rock, 
which strongly influences heat flow. 

For our model, conduction in the flow direction is ignored, 
since the Prandtl number is expected to be much greater than 
one [e.g., Bird et al., 1960; Shah and London, 1978], and heat 
is convected much faster down flow than it could be conducted 

in the same direction. The radiative losses are assumed to be 

insignificant, since the area of skylights, and thus the area 
exposed to radiative cooling, is very small [Keszthelyi, 1995]. 

Additionally, the material properties (viscosity, density, 
and thermal conductivity) are assumed to be constant. This is 
an important simplifying assumption, but it is also made since 
these models are intended for flows that are well insulated and 

undergo minimal amounts of cooling, and the temperature- 
dependent variations in thermal conductivity and heat capacity 
will be small. The minimal cooling observed in tube flows also 
prompted the neglect of latent heat of crystallization. The 
assumption of constant density induces more potential error, 
since there is some evidence for significant changes in 
vesicularity along flow paths [Swanson and Fabbi, 1973; 
Cashman et al., 1994]. However, data sets that track both tube 
flow temperature and the density within the tube over the flow 
length are scarce, so density variations are neglected for these 
models. While we know that other property (thermal 
conductivity, vesicularity, theology) variations are often 
present and have measured variations of some of them in a few 
flows, it is not yet clear what range or property values is 
appropriate as input for a general cooling model, and this set 
of models cannot accommodate variations within the flow. 

Consequently, we have assumed constant values. The next 
generation of models will most likely need to consider both 
density variations as well as potential thermal conductivity 
variations with vesicularity, and may need to consider bubble- 
or crystal-driven non-Newtonian effects in the velocity 
profile. 

There are two major difference between this study and the 
other existing thermal model of tube flow [Keszthelyi, 1995]. 
The first difference is the treatment of the heat convected down 

the tube, which this study explicitly solves for, and Keszthelyi 
assumes is a uniform process in a well-mixed tube. The second 
difference is the selection of the rate-limiting process in the 
heat transfer from the flow interior through tube walls to the 
surroundings. This study assumes that the rate-limiting process 
is within the flow boundary layer, and so the form of the 
external heat transfer processes is not important. Keszthelyi 
assumes that the rate-limiting process(es) are external to the 
tube, which is well mixed and without a significant internal 
thermal boundary layer. When the rate-limiting processes are 
external to the tube, ambient conditions such as burial depth 
and rain percolation become important, and results must be 
calculated for each tube section with different external 

conditions. For example, when the rate-limiting heat transfer 
is external to the tube the proximity of the tube to the surface 
strongly affects the cooling. Figure 3 shows the steady state 
two-dimensional temperature field for the conductive solution 
used by Keszthelyi [1995]. Here, the isotherms at intervals of 
100øC [Eckert and Drake, 1987, equations 3-65 and 3-70] have 
been plotted for a 1-m-diameter tube with a tube center 1.5 m 
below the surface. This solution is for an isothermal solid 

source and is commonly used in applications such as finding 
the temperatures around a buried cable. Using it alone precludes 
consideration of heat flux differences caused by either radial or 
axial temperature differences within the tube such as a thermal 
boundary layer or the cooling along the tube. However, this 
solution provides information on the effects of a nonuniform 
thermal gradient around a tube and can be added as a linear 
correction to a convective solution with a constant flux 

boundary condition for cases where the limiting heat flow rate 
in the problem is not within the thermal boundary layer within 
the flow. For the current study, the burial depth is not a 
significant factor unless it is very large (e.g., greater than 20 
tube diameters or so) and affects the relative size of the external 
thermal gradient compared to the thermal gradient in the 
boundary layer. 

Tube sizes and average velocities are very poorly known, 
and the model is sensitive to them, so assuming a range of 
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Figure 3. Two-dimensional temperature field for conductive heat flow from an isothermal cylindrical solid in 
a semi-infinite half space. N is the distance of the cylinder center below the surface, a is the radius, and D is the 
diameter. The surface is held at temperature Ts, and the cylinder is held at T o. The plot shows the effects of a 
nearby free surface on the temperature field and thermal gradients around the cylinder with a constant 
temperature boundary. 

values for both results in very poorly constrained cooling 
predictions. Flow rates are rather better [e.g.• Kauahikaua et 
al., 1996], so the best constrained results from the cooling 
models in this study are obtained using observed or inferred 
flow rates. However, for prehistoric or remotely imaged flows, 
this is not feasible. For these cases we must estimate 

reasonable flow rate ranges from the tube dimensions, 
underlying slopes, and a range of reasonable viscosities. In 
order to use this approach with these models, the rheological 
properties must be assumed to be constant both across the tube 
section and down the tube. For basaltic flows like those 

considered here, the viscosity can either be based on field 
measurements [e.g., Shaw et al., 1968] or a temperature- 
dependent rheology model [e.g., Shaw et al., 1968; Shaw, 
1969; Sakimoto, 1995a]. At the tube entrance temperatures 
assumed here, all flows start out well in the Newtonjan range 
with respect to crystallinity [Shaw et al. 1968; Shaw, 1969; 
Sakimoto, 1995a]. For these temperatures and the temperatures 
these models predict at the tube ends, the non-Newtonian 
effects are likely to be small. For flows where initial 
temperatures or cooling effects put the flow within the non- 
Newtonian range of behavior, the primary effects will be to 
extend entrance lengths and reduce flow rates. For estimating 
flow rate and viscosity ranges, the approach of Sakirnoto et al. 
[1997] will yield flow rates for pressure-driven, gravity-driven, 
or combined flow for the Newtonian as well as the power law 
and Bingham rheologies if tube dimensions and underlying 
slopes are estimated. 

2.2. Analytic Cooling Models 

We consider four convective cooling solutions: a circular 
tube and a parallel plate with constant temperature walls and a 
circular tube and parallel plate with constant heat flux at the 
walls. All four solutions assume hydrodynamically developed 
flow, constant material properties, constant temperature at the 
entrance, no conduction in the flow direction, and no viscous 
dissipation. These are all eigenfunction summations that yield 
solutions for mean tube temperature versus distance down the 
tube. All four have been checked for accuracy against results in 
the literature. They are presented in their entirety in the 
appendix, both for comparison between solutions and since 

some of the sources are out of print or in journals not normally 
found in physical volcanology collections. 

Consider the similar problems of steady state thermal losses 
from a hot fluid flowing in a circular tube or between parallel 
plates. In Cartesian coordinates, the energy equation is 

3T 3T 3T_ k I32T 32T 32T] 
Vx'•x + Vy'•yy "l-Vz DZ pc. lax = + a7+ a7 ] ' (1) 

where T is the temperature, k is the thermal conductivity, Cp is 
the heat capacity, p is the flow density (see Table 1), and V x, 
Vy, and V• are the velocity components. For flow in a round 
tube with the coordinate system of Figure 4a and axlal 
symmetry, equation (1) becomes 

v@C•' 3T 1 3 (r3T) 32T (2) k 3'•-- r 3r[. '•'rJ + 3z •' 
In laminar flow the last term on the right is very small 

compared to the other terms and so is normally neglected. 
Equation (2) may be rewritten as 

m az pc. L 3r2 +- ' (3a) 
For equation (3a), we will consider either a constant wall 

temperature set of boundary conditions 

a b 

r 

2d 

Figure 4. (a) Cylindrical coordinate system used for tube 
flow pr6blem. Flow is in positive z direction and 
axisymmetric in 0 if tube is full and boundary conditions are 
axisymmetric in 0. (b) Parallel plate coordinate system. Flow 
is in positive z-direction with identical boundary conditions 
on the upper and lower walls, with width w>d, where d is the 
half-separation distance of the plate. 
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T = T e r_< a -oo_<z<O T = T• y_< d -oo_<z<O 
T = T w r= a O<z_<+oo T = T w y= d O<z_<+oo 

(3b) 
3T/3z = 0 r = 0 -oo < z < +oo 3T/3z = 0 y = 0 -oo < z < +oo 

T=T w O<r<a z=+oo T=T w O<y<d z=+oo 

(4b) 

where Te is the constant entrance temperature, Tw is the 
constant wall temperature, and a is the tube radius, or a 
constant wall heat flux set of boundary conditions 

T= T e r< a -oo_<z<O 
•)T/3r = qwa/k r = a 0 < z -< +oo 

•)T/3z = 0 r = 0 -oo _< z -< +oo 

T = T w O_< r_< a z = + oo 

(3c) 

where qw is a specified constant wall heat flux. 
For unidirectional flow between parallel plates with the 

coordinate system of Figure 4b, equation (1) becomes 

3•T = pCp 32T (4a) Vz3z k 3y 2' 

For equation (4a) we will consider either a constant wall 
temperature set of boundary conditions 

where 2d is the plate spacing, or a constant wail heat flux set 
of boundary conditions 

T=T• y<d -oo<z<0 

3T/3y = qwa/k y = d 0 < z < +oo 
•)T/3z = 0 y = 0 -oo < z < 

T=T w O< y<d z= .+oo 

(4c) 

Figure 5 shows a comparison of the constarlt temperature 
wall solutions for circular tube (equations (3a) and (3b)) and 
parallel plate (equations (4a) and (4b)) flows with widths equal 
to 12 times the plate spacing. Dimensionless fluid bulk mean 
temperature [(Tm-Te)/(Te-Tw)] is plotted versus distance from the 
tube entrance and volume flow rate. The assumed values for k, 

C•, a.nd p are from Table 1. From Figure 5, it is clear that the 
circular tube flows are more thermally efficient. The tube flows 
need approximately one-tenth the flow rate of the parallel plate 
flows to maintain the same drop in mean tube temperature with 
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Figure 5. Comparison of the constant temperature wall convective cooling models for the dimensionless 
mean bulk temperature for up to 200-kin-long tubes with flow rates of 1 to 1000 m3/s. Both plots are for a 
summation of 500 terms evaluated every 2 km. (a) Circular tube model. (b) Parallel plate model for w=12(2d). 
Note that for tubes, the temperature solutions are most accurate near Tm=T w, and become increasingly 
unrealistic as T m • T w, since the temperature dependence of the viscosity will become important for more than 
minimal cooling amounts. 
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Figure 6. Comparison of the constant wall heat flux convective cooling models for dimensionless mean 
bulk temperature for up to 200-km-long tubes with flow rates of 1 to 1000 m3/s. (a) Circular tube model. (b) 
Parallel plate model for w=3d. 

distance. Note that the lava tube temperature solutions are most 
accurate near Tm=T w and become increasingly unrealistic as 
Tm•T w, since the temperature dependence of the viscosity will 
become important for more than minimal cooling amounts. 

Figure 6 also shows the dimensionless fluid mean bulk 
temperature versus distance but for the constant wall heat flux 
solutions for circular tube (equations (3a) and (3c)) and parallel 
plate (equations (4a) and (4c)) flows. As before, the flow widths 
for the parallel plate solutions are equal to 12 times the plate 
spacing. As for the constant temperature solutions, the round 
tubes are more thermally efficient. 

For both types of thermal boundary conditions, the mean 
temperature versus distance predictions for specific tube flows 
are found by assuming entrance temperatures, wall temperatures 
or heat fluxes, and flow rate ranges. The entrance temperatures 
are normally assumed to be the eruption temperatures, and the 
flow rates are either observed or a range is found using the 
driving-force approach described earlier. 

3. Predicted Cooling in Long Basaltic Flows 

3.1. Waha'ula and Kamoamoa Lava Tubes, 
Kilauea, Hawaii 

The Pu'u 'O'o -Kupaianaha eruption of Kilauea (1983- 
present) has resulted in the formation of numerous lava tubes 
[e.g., see Wolfe et al., 1987; Heliker and Wright, 1991' 

Realmuto et al., 1992; Mattox et al., 1993; Hon et al., 1994; 
Mangan et al., 1995; Kauahikaua et al., 1996]. We have 
selected data from two of these tubes (the Waha'ula tube and the 
Kamoamoa tube) for cooling model input. 

The Waha'ula tube was part of episode 48 which erupted 
nearly continuously from the Kupaianaha vent from July 1986 
through February 1992 [Mattox et al., 1993; Hon et al., 1994; 
Kauahikaua et al., 1996]. From April 1991 through February, 
1992, the Waha'ula tube carried all of the lava produced at the 
Kupaianaha vent 12 km to the ocean [Kauahikaua et al., 1996]. 
Kauahikaua et al.'s [1996] measurements of the volumetric 
flow rate through the tube ranged from 250,000 m3/d through 
an approximately linear decrease down to 54,000 m3/d (2.9- 
0.625 m3/s, average value of 1.74 m3/s). Eruption temperatures 
for the Kupaianaha vent lava pond for this episode were 
reported by Helz et al. [1991] as 1158ø-1161øC, with a 
maximum of 8ø-9øC cooling from the pond to the coast. 
Cashman et al. [1994] sampled the tube at half a dozen 
skylight, breakout, and coastal spatter locations and reported 
glass geothermometry temperatures of the samples as ranging 
from 1153øC at 1.5 km from the vent to 1150øC at the coast, 
with two breakouts (and thus possibly slightly cooler samples) 
as the lowest temperature of 1147 ø (see Figure 1). (See Helz and 
Thornber [1987] and Helz et al. [1995] for a discussion of the 
geothermometry techniques.) Since the lava tube system 
extended from the Kupaianaha lava pond to the coast [Heliker 
and Wright, 1991; Realrnuto et al., 1992; Mattox et al., 1993; 
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Hon et al., 1994; Kauahikaua et al., 1996], we have assumed 
the pond temperature to be the tube entry temperature. For the 
model of this tube, we have assumed tube entrance temperatures 
of 1158ø-1161øC and flow rates of 0.6-3 m3/s. The transition 

point between a partially full tube and a full tube is poorly 
constrained. To find the slopes along the Waha'ula tube and the 
Kamoamoa tubes, we displayed the preemption topography 
contours from the Kilauea volcanology CD-ROM version of 
the Hawaii Volcanoes National Park map [Glaze et al., 1992; 
U.S. Geological Survey, 1986] over Cashman et al.'s [1994, 
Figure 1] reported tube locations for the temperature 
measurements and plotted the topographic profiles and slopes 
along the tube traces in Figure 7. This is more detailed slope 
data than used in Keszthelyi's [1995] thermal model, and it 
shows a gradually increasing slope from the vent to the Pali 
until the shallow slopes of the coastal plain are encountered. 
These data are consistent with estimated slopes of less than 2 ø 
near the vent [e.g., Wolfe et al., 1987; J. Kauahikaua, personal 
communication, 1995], increasing to more than 10 ø over the 
Pali, and coastal plain slopes under 2 ø again. There are no 
reported skylights for this tube on the coastal plain, and both 
the Waha'ula tube and the Kamoamoa tubes were feeding 
inflating flows and so were very likely to be pressurized and 
full. The slope distribution shown in the Figure 7 could easily 
produce tubes that have a long transition from partially full to 
full [Crisp et al., 1995]. 
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Figure 7. Topographic profiles and slopes along the (a) 
Kamoamoa and (b)Waha'ula lava tube locations reported by 
Cashman et al. [1994]. For both plots, elevation is plotted 
along the left y axis and slope along the right y axis. Solid 
line is the elevation versus distance, and the dashed line is 
slope versus distance. Vertical exaggeration is approximately 
a factor of 4. 

We examine parallel plate and tube models separately, but 
given observations of differences in the nature of the flow, as 
well as the resultant model fits for separate solutions, we are 
driven to consider combined solutions. Since the depth of the 
flow in the tube near the vent, where the tubes tend to mn 

partially full, was measured as 0.5-1 m [Cashman et al., 1994; 
Kauahikaua, 1996], we have constructed a piecewise model in 
which flow near the vent uses the parallel plate model. Farther 
from the vent where slopes are shallower and tubes tend to mn 
full [Cashman et al., 1993; Hon et al., 1994; Cashman et al., 
1994, Kauahikaua, 1996] we utilize the circular tube model. 

The Kamoamoa tube was part of eruption episode 53 from 
the Pu'u O'o vent. Cashman et al.'s [1994] geothermometry 
data for the tube samples show temperature results similar to 
those of the Waha'ula tube, with the highest temperatures of 
1154 ø found 1.1 km from the vent, with values decreasing to 
1148øC at the coast (Figure 1). Published data for this episode 
are not as abundant as for earlier episodes. However, the Pu'u 
O'o vent regularly erupts lavas about 6øC hotter than those at 
the Kupaianaha vent [Heliker and Wright, 1991; Helz et al., 
1991]. Considering this and that the start of the tube was near 
or at the vent, we have assumed a probable range of tube 
entrance temperature of 1162øC to 1168 ø, which were the most 
recent previous temperatures at this vent [Helz et al., 1991 ]. C. 
Thornber's (personal communication, 1997) data from the last 
several years indicate typical lava tube cooling rates of 
0.7øC/km with ranges from 0.5 ø to 1 øC/km depending on flow 
rate, tube diameter, etc. Eruption rates for this tube are also 
uncertain, and we have used a range of 0.1-6 m3/s that is 
consistent with the range of flow rates observed for other tubes 
in this eruption [Heliker and Wright, 1991; Kauahikaua et al., 
1992; Hon et al., 1994; Zebker et al., 1996; Kauahikaua, 
1996; Kauahikaua et al., 1996]. Slope ranges for the 
Kamoamoa tube are similar to those of the nearby Waha'ula 
tube described above. 

Figure 8 shows the best cooling model fits for the Waha'ula 
and Kamoamoa lava tubes with the temperature data of 
Cashman et al. [1994]. Figure 8a compares constant wall 
temperature circular tube and parallel plate models for a 
constant temperature boundary of 1077øC, a 1.7 m3/s flow rate, 
and some variation in the eruption temperatures. Note that 
neither the tube or parallel plate model can be fit to the tube 
along its length. This is expected due to the difference in flow 
regime between the near-vent and distal parts of the flow. To 
explain the observed temperature requires a combination of 
models. The best fit of the constant wall temperature models is 
shown in Figure 8a; this model has a 12-m-wide by 1-m-deep 
flow with a gradual change in geometry to a full round tube, a 
1.7 m3/s flow rate throughout its length, and a transition to a 
full tube after several kilometers where the slopes increase 
beyond 2 ø. Figure 8b shows several results for the constant 
heat flux boundary condition and compares a parallel plate 
model with a flow depth of 1 m and a width of 12 m to a circular 
tube model as well as a dual geometry model for a constant wall 
heat flux of 2 kW/m 2 (within the range shown by Keszthelyi 
[1995]). The best constant flux model fit from within the range 
of parameters considered (see Table 3) has a flow rate of 1.7 
m3/s, and an initial temperature of 1158 ø C in a partially full 
tube for the first few kilometers, with a slow transition to a full 

round tube using the solution matching method described in the 
assumptions. Figure 8c shows the Kamoamoa convective 
cooling models and compares one parallel plate model that is 
12 m wide and 1 m deep with a flow rate of 4.5 m3/s and an 
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Figure 8. Comparison of convective cooling models for the Waha'ula and Kamoamoa lava tubes plotted with 
the data from Figure 1. (a) Constant temperature wall models for the Waha'ula tube. The solid line is the 
temperature predicted for a circular tube with a flow rate of 1.7 m3/s, a wall temperature of 1077øC, and an 
initial temperature of 1158øC; the dotted line is the parallel plate cooling model for the same flow rate and an 
eruption temperature of 1162øC; and the dashed line is a cooling rate predicted by a flow rate of 1.7 m3/s and an 
initial temperature of 1162øC in a partially full tube for the first few kilometers, with a slow transition to a full 
round tube. (b) Constant wall heat flux models for the Waha'ula tube. The solid line is the temperature predicted 
for a circular tube with a flow rate of 1.7 m3/s, a wall heat flux of 2 kW/m 2, a tube diameter of 3 m, and an initial 
temperature of 1160øC. The dotted line is the parallel plate cooling model for the same flow rate, a flow width 
of 12 m, depth of 1 m, and an eruption temperature of 1158øC, and the dashed line is the cooling predicted by a 
flow rate of 1.7 m3/s and an initial temperature of 1158øC in a partially full tube for the first few kilometers, 
with a slow transition to a full round tube. (c) Constant temperature wall models for the Kamoamoa tube. The 
solid line is the temperature predicted for a circular tube with a flow rate of 4.5 m3/s, wall temperature of 
1077øC, and initial temperature of 1156øC. The dotted line is the parallel plate cooling model for a flow rate of 
4.5 m3/s and an eruption temperature of 1164øC, and the dashed line is the cooling predicted by a flow rate of 
4.5 m3/s and an initial temperature of 1164øC in a partially full tube for the first several kilometers, with a 
slow transition to a full round tube. 
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eruption temperature of 1164øC with a circular tube model with 
a wall temperature of 1077øC, an initial temperature of 1156øC, 
and a flow rate of 1 m3/s. The 12:1 aspect ratio here is 
primarily for comparison to the Waha'ula tube, since the 
published data on the Kamoamoa tube have little tube size 
information. The best fit is with a dual geometry model with an 
1164øC eruption temperature and a partially full (12 m wide and 
1 m deep) tube that makes a gradual transition after several 
kilometers to a circular tube with the same flow rate and wall 

temperature. The constant heat flux models for Kamoamoa 
provide similar results to those shown with the Waha'ula tube, 
and here it also tends to overpredict the cooling near the end of 
the tube and to underpredict it near the front, even when fit with 
a dual geometry model. Section 4 illustrates some of the effects 
of systematic variations in the flow rate, entrance temperature, 
and wall temperature for the parallel plate and circular tube 
models. Higher cooling rates for the constant flux circular tube 
flow models can be obtained by decreasing their depth of 
burial, but they will still consistently underpredict the cooling 
on the upper slopes. 

For both tubes, the thermal losses in the distal regions of 
the flow are well fit by the full circular tube models, but the 
heat losses in the vicinity of the vent are still an open 
question. The dual geometry models presented here are one 
possible explanation for the apparently higher near-vent 
thermal losses, but we recognize that other mechanisms and 
model parameter adjustments may fit the data equally well. 
However, without additional data, we cannot distinguish 
between the appropriateness of this dual geometry model and a 
variety of more complex model approaches. 

3.2. Flows From the Undara, Toomba, and 
Kinrara Volcanoes, Queensland, Australia 

The Undara, Toomba, and Kinrara volcanoes are sources for 
three of the long basaltic lava flows found in North Queensland 
that may have been tube-fed [Atkinson et al., 1975; 
Stephenson and Griffin, 1976; Stephenson et al., 1980; 
Atkinson and Atkinson, 1995]. All three of these flows are on 
shallow slopes and show little petrographic or textural 
variation from vent to end, which suggests minimal cooling 
and tube flow rather than surface flow. They all have either 
drained tubes and collapse pits or inflation features common to 
tube-fed basaltic flows on low slopes [e.g., Stephenson et al., 
1996; Whitehead and Stephenson, this issue] similar to those 
seen in Hawaiian flows [e.g., Cushman et al., 1993; Hon et al., 

1994; Kauahikaua et al., 1996; Kauahikaua, 1996]. The ranges 
used for eruption temperature, flow length, and flow rates are 
shown in Table 3. The flow rate range encompasses some very 
large flow rates as well as the low rates favored by Stephenson 
et al. [1996] to include the possibility that the largest tubes 
might have flowed full (particularly in the early stages of the 
eruption), although field evidence of numerous flow levels at 
Undara suggests that the largest tubes flowed partially full at 
least some of the time [Atkinson and Atkinson, 1995]. 

The 190,000-year-old Undara volcano in the McBride 
volcanic province of Queensland, Australia, is well known for 
its lava tubes and has generated some very long lava flows, 
including one that is more than 160 km long on an average 
slope of 0.3 ø , with numerous lava tube collapse pits, caves, 
inflation features, and depressions [Stephenson et al., 1980]. 
Other features in the flow include possible "conduit systems" 
which may be tube networks rather than a single tube, since 
they are on the lowest slopes along the flow of <0.1 ø, and 
show evidence for flow inflation, which is commonly a tube- 
fed phenomenon [Hon et al., 1994]. There is also evidence for 
thermal or thermomechanical erosion by the lava tubes 
[Stephenson, 1996 p. 82]. Undara has similar petrography 
from end to end, and P.J. Stephenson (personal 
communication, 1997) found composition melt temperatures at 
the distal end of 1150 ø. The region proximal to the vent of the 
same unit has been buffed by subsequent flows, but the 
petrographic variation from end to end is similar to that at 
Toomba, and so here we have assumed that the temperature 
variations were similar also. Some of the Undara lava tube 

caves show evidence of flow levels [Atkinson and Atkinson, 
1995] and so may have been similar in places to the partially 
full tubes on the upper slopes of Kilauea's Pu'u O'o-Kupaianaha 
eruption [e.g., Hon et al., 1994; Kauahikaua et al., 1996]. 
However, without detailed temperature data, there are few 
constraints on which of several cooling models might be most 
accurate. 

The 13,000 year old Toomba basalt flow in the Nulla 
volcanic province of Queensland, Australia is 123 km long on 
an average slope of 0.2 ø [Stephenson and Griffin, 1976; 
Stephenson et al., 1996; Whitehead and Stephenson, 1996] 
and has well-preserved pahoehoe inflation structures that are 
presumed to be tube-fed, although the tubes are assumed to have 
solidified under the flow undrained [Stephenson and Whitehead, 
1996]. Although the Toomba flow followed the bed of the 
Burdekin fiver, the absence of pillow basalt and hyaloclastite 
features at the flow base has led to the interpretation that the 

Table 3. Assumed Tube Flow Parameters 

Tube Length, km Eruption Temperature Range, øC Flow Rate Range, m3/s 

Waha'ula Tube 

(Kilauea, Hawaii) 
Kamoamoa Tube 

(Kilauea, Hawaii) 
Undara Flow 

(Queensland, Australia) 
Toomba Flow 

(Queensland, Australia) 
Kinrara 

(Queensland, Australia) 
Alba Patera, Mars 

11.5 1158-1162 0.6-3 (1.7) 

12 1162-1168 0.1-6 

160 1155-1165 1-1000 

123 1150 1-1000 

50 1160 1-1000 

200 1145-1170 1-100,000 
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river was at dry season levels and may not have been flowing 
on the surface during flow emplacement [Stephenson, 1996]. 
The flow may have encountered isolated water holes 
[Stephenson and Whitehead, 1996], and there is evidence of 
interaction of water with the solid but still hot flow 

[Stephenson, 1996]. The general absence of lava channels and 
aa lava and an abundance of inflation features led Stephenson et 
al. [1996] to favor low effusion rates (5-10 m3/s). Petrologic 
relationships combined with some melt modeling and a series 
of glass analyses indicate an eruption temperature of 1150øC, 
with possibly 10 ø of apparent cooling, although glass 
alteration has obscured some of the relationships and made the 
interpretation of the results problematic (P.J. Stephenson, 
personal communication, 1997). 

The 20,000-year-old Kinrara volcano in the McBride 
volcanic province of Queensland, Australia, generated basanite 
ß a,ao , ,,, ,•,. .... over ,,1 average 

[Stephenson et al., 1980, 1996]. The effusion rate for this 
volcano was probably higher (or less steady) than for Undara 
and Toomba, since the crater formed a spatter rim, and aa lavas 
make up a relatively larger percentage of the flows 
[Stephenson et al., 1996]. However, a number of flow inflation 
features and drained lava tubes indicate that the flows were tube- 

fed to at least some extent. From melt modeling and 
comparisons to the Tootuba and Undara compositions, the 
eruption temperature may have been somewhat higher (perhaps 
1160øC (P.J. Stephenson, personal communication, 1997')). 

Figure 9 shows the results for the Undara model which is a 
constant wall temperature model for an eruption temperature of 
1160øC and wall temperatures of either 1077 ø or 1130 ø. Results 
are shown for flow rates of 1 to 1000 m3/s. The lower wall 

temperature model is more appropriate for a more established 
tube, where the wall location has reached equilibrium at the 
isotherm of the effective solid. The hotter wall temperature 
may be more appropriate for regions of the flow where the tube 
was less distinct, either as part of a network of closely spaced 
flow paths or as part of an internal region of concentrated flow. 
For the lower wall temperatures, the circular tube model requires 
flow rates of approximately 10 m3/s or more to avoid 
temperature drops that would produce substantial rheology 
changes, and the parallel plate model would require flow rates 
of approximately 40 m3/s or more. The higher wall 
temperatures would allow lower rates of 2 and 20 m3/s for the 
circular tube and parallel plate models, respectively. The 
models for the Tootuba flow used a lower eruption temperature 
of 1150øC but had a slightly shorter flow length and resulted in 
nearly identical cooling predictions and flow rate restrictions. 
The Kinrara models used the same parameters as the Undara 
models, and the results for the Kintara flow can be read from 

Figure 9 at the 50-km Kinrara tube length. The shorter (50 km) 
flow length allows most of the lowest flow rates of 1-5 m3/s to 
reach the end of the flow with less than 10 ø cooling for the 
hotter wall temperature of 1130 ø, and flow rates of 10-50 m3/s 
are required for the cooler wall temperatures. As for Undara, the 
lower wall temperature model is more appropriate for the more 
established tube and the hotter wall temperature for the less 
established tube or tube-like internal flow networks. 

3.3. Alba Patera Lava Tubes, Mars 

Alba Patera is an extensive volcanic structure on the 

northern portion of the Tharsis region of Mars. With a summit 
that is about 7 km above the surrounding terrain and a diameter 

of 1600 km, the average slopes are thought to be <0.5 ø [Carr, 
1981; Cattermole, 1990]. Alba has numerous lava flows up to 
hundreds of kilometers long with a ridged cross section, many 
with chains of depressions thought to be collapse pits [Carr et 
al., 1977; Cattermole, 1987, 1990; Mouginis-Mark et al., 
1988; Schneeberger and Pieri, 1991; Hodges and Moore, 
1992]. Previous work [Sakimoto et al., 1997] on the 
relationships between tube dimensions, driving forces, and 
effusion rates and rheology parameters was applied to Alba 
Patera and suggests effusion rates somewhere between 2 and 
105 m3/s and viscosities between 102 and 106 Pa s. Sakimoto 
et al. [1997] also estimated common tube diameters from the 
minimum collapse depression sizes at 50-100 m and typical 
flow lengths of 50-100 km from the lengths of the collapse 
depressions chains. For this study, we have modeled a 
representative flow that is 200 km long, with effusion rates 

flow width was assumed to be 100 m, and we arbitrarily set the 
flow depth to 20 m. We have used a range of eruption 
temperatures of 1145 ø to 1170øC on the assumption that the 
flows were probably basaltic [e.g., Carr et al., 1977], though 
this parameter is obviously poorly constrained. 

Figure 10 shows the model results for the constant 
temperature wall convective cooling models for the Alba Patera 
lava tubes. For this set of predictions, the circular tube flow 
rates would need to be at least 10 m3/s to avoid significant 
viscosity increases before a 200-km flow length was reached 
and greater than about 2 m3/s for the 50-kin tube. For the 
parallel plate flow, the thermal losses are larger, and the flow 
rates would need to be -40 m3/s through the 200-km tube and 
nearly 20 m3/s or greater for the 50-km-long tube. 

4. Discussion 

Constant wall temperature convective cooling models 
predict a nonlinear cooling rate as a function of distance for 
lava tubes. However, for those flows for which we have the 

most detailed temperature measurements, there are variations in 
the geometry of the tube flow regime, and no single model can 
adequately fit the data within published uncertainties. A 
constant wall temperature model that combines a tube solution 
at the distal part of the tube (where slopes are shallow and tubes 
run full) with a parallel plate model in the near-vent region 
(that takes into account radiative loss where slopes are higher 
and tubes run partially full), can explain the Waha'ula and 
Kamoamoa lava tube temperature measurements. The constant 
heat flux solutions yield a constant cooling rate with distance 
that is not as good a fit to the data where we have detailed 
information on the tube temperature versus distance. As in 
Keszthelyi's [1995] model, the constant heat flux model will 
yield a different cooling rate if it is evaluated for each different 
tube section diameter, but the rates are still piecewise linear, 
and the additional diameter information is necessary to predict 
the mean tube temperature variation with distance. This 
constant heat flux assumption also implies that the wall 
temperature cannot be constant along the length of the flow. 
Likewise, the higher heat flux rates near the tube entrance 
required by the constant temperature wall models seem 
consistent with Realmuto et al.'s [1992] data, as well as 
theoretically reasonable, since the temperature differences 
between the initial lava temperature and the ambient 
conditions are likely to be larger. 
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Figure 9. Comparison of constant temperature wall convective cooling models for the Undara lava tube 
with contours for flow rates of 1, 2, 3, 5, 10, 20, 100, and 1000 m3/s. (a) Temperatures predicted for a circular 
tube with an entrance temperature of 1160øC and wall temperature of 1077øC. (b) Temperatures predicted for a 
circular tube with an entrance temperature of 1160øC and a wall temperature of 1130øC. (c) Temperatures 
predicted for parallel plate flow with a height of 1 m and a width of 5 m with an entrance temperature of 1160øC 
and wall temperature of 1077øC. (d) Temperatures predicted for parallel plate flow with a height to width ratio 
of 1:5, an entrance temperature of 1160øC and wall temperature of 1130øC. As in Figure 5, the temperature 
solutions are most accurate near Tm=T w, and become increasingly unrealistic as T,n • T w, since the temperature 
dependence of the viscosity will become important for more than minimal cooling amounts. 
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Figure 10. Comparison of constant temperature wall convective cooling models for the Alba Patera lava 
tube with contours for flow rates of 1 to 105 m3/s. (a) Mean bulk temperatures predicted for a circular tube with 
an entrance temperature of 1160øC and wall temperature of 1077øC. (b) Temperatures predicted for parallel plate 
flow with a height:width ratio of 1:5, an entrance temperature of 1160øC, and a wall temperature of 1077øC. 

Within the cooling predictions of the constant wall 
temperature models, the use of an accurate flow rate yields more 
reliable cooling rate results than modeling cooling rates with 
flow rates from slopes or driving pressures. With a flow rate 
approach and the constant wall temperature models, the aspect 
ratio of the flow affects the cooling more than the flow rate. 
With this in mind, a parallel plate flow approximation with an 
accurate flow rate is arguably a better cooling model 
approximation for partially full tubes in Hawaii than the 
circular tube model and yields a very good fit to the available 
data for the upper 3 km of the partially full Waha'ula tube. 
Additionally, wall temperatures in the range of 1070ø-1130øC 
work well in these models. They are consistent with prior 
estimates of either where the basalt makes a transition to a 

rheological solid (55% crystals [Marsh, 1981]) or where, in 
the margins of small or slow flow systems, the crystal content 
and shear strength are not yet close to the 55% crystallinity 
but are large enough to retard flow and act as a wall (e.g., 15- 
55% crystals in small tubes [$akimoto, 1995b, also 
unpublished data, 1997]). 

The above results for the tubes were selected to show some 

of the best fits of the models to the data. In order to show some 

of the variations expected in the predicted temperatures as a 
function of input parameter variations, Figures 11 and 12 show 
the circular tube and parallel plate constant wall temperature 
models for systematic variations in flow rate, entrance 

temperature, wall temperature, and flow width (for the parallel 
plate model). For both geometries, the steepest cooling rates 
are at the entrance, and wall temperatures of 1077 ø provide 
reasonable data fits, although a combination of higher wall 
temperatures and a shallower tube will yield similar results. For 
Figure 12, the range of flow widths shown extends from w/D = 
8 to 40. The lower end of the range will tend to underpredict 
cooling, since the effects of heat loss from the sides of the 
flow will be a significant fraction of the total heat losses. 

If additional information is available for a particular tube on 
burial depth variations or other factors that might introduce a 
significant axial variation in the temperature or heat flux 
boundary condition, there are a few analytic solutions 
available that factor in axial variations in wall heat flux or 

temperature [Shah and London, 1978]. For example, for a 
linear variation in wall temperature for the circular tube, see 
Sellars et al. [1956], or for wall heat flux variations, see 
Bhattacharyya and Roy [1970]. Predictably, wall temperatures 
are higher where heat flux rates are higher. One main effect of 
such axial variations is the lengthening of the thermal 
entrance length. 

Figure 13 compares the thermal losses from a strictly 
conductive (static lava) cooling solution to those calculated 
from the convective circular tube constant wall temperature 
solution presented here. It is a plot of the ratio of the heat flux 
per unit area versus distance from the tube entrance for the 
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Figure 11. Comparison of constant wall temperature circular tube convective cooling models for systematic 
variations in flow rate, entrance temperature, and wall temperature. (a) The constant wall temperature circular 
tube model with an entrance temperature of 1154øC, wall temperatures of 1077øC, and flow rates of 1-50 m3/s. 
(b) The same model for flow rates of 1.7 m3/s ,wall temperatures of 1077øC, and entrance temperatures of 
1150øC to 1158øC. (c) The same model for flow rates of 1.7 m3/s and entrance temperatures of 1154øC and wall 
temperatures from 500 ø to 1130øC. 

circular tube model and the heat flux per unit area for the 
conductive cooling solution used in Figure 3 and by Keszthelyi 
[1995]. The heat flux per unit area for the convective model i s 
calculated from the definition of the local Nusselt number, 

Nu•.r= [qw(z) Dh]/(rw-Om) [Shah and London, 1978], where 0 m is 
given by equation (A7)and Nu•.r is given by equation (A17). 
While the heat flux per unit area in the convective solution 
may start at larger flux rates than those predicted from the 
conductive solution, the flux rates decrease rapidly as the 
thermal boundary layer grows. The conductive solution of 

Figure 3 assumes a constant temperature (solid) source to 
calculate the heat flux, and does not treat either the thermal 

boundary layer or the heat carried down the tube by the fluid. 
For shorter tubes such as the 10 km tubes in Hawaii, the total 

thermal losses for both solutions may be similar, but for 
longer tubes, the thermal losses from the convective solutions 
will be far less than those in the conductive solutions. 

For partially full tubes, the assumption of a flow surface 
cooler than the flow interior allows the formation of a 

temperature gradient within the flow near the surface that is 
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Figure 12. Comparison of constant wall temperature parallel plate convective cooling models for 
systematic variations in flow rate, entrance temperature, wall temperature, and aspect ratio. (a) The constant 
wall temperature parallel plate model with an entrance temperature of 1162øC, flow depth of 1 m, flow width of 
12 m, and flow rates of 1-50 m3/s. (b) The same model for flow rates of 1.7 m3/s, wall temperature of 1077øC, 
and entrance temperatures of 1150øC to 1162øC. (c) The same model for flow rates of 1.7 m3/s and entrance 
temperatures of 1162øC and wall temperatures from 700øC to 1130øC. (d) The same model for flow rates of 1.7 
m3/s and entrance temperatures of 1162øC, wall temperatures of 1077øC, and flow widths from 8 m to 40 m. 



SAKIMOTO AND ZUBER: FLOW AND CONVF_L-'FIVE COOLING IN LAVA TUBES 27,481 

3 

2.5 

1.5 
Q = 100 m3/s 

1 

10. 0.5 

o 
o 2 4 6 8 lO 12 

Distance from tube entrance [km] 

Figure 13. Plot of the ratio of the heat flux per unit area 
versus distance from the tube entrance for the circular tube 

constant temperature wall convective cooling model and the 
heat flux per unit area for the conductive cooling solution used 
in Figure 3 and by Keszthelyi [1995]. The heat flux per unit 
area for the convective model is calculated from equations (A7) 
and (A17) and the local Nusselt number (see text). While the 
heat flux per unit area in the convective solutions may start at 
larger values than those predicted from the conductive 
solution, the flux rates decrease rapidly as the thermal 
boundary layer grows. 

similar to those at the sides of the flow. If the difference is at 

least a few degrees, the heat transfer rates within the flow will 
again be the limiting cooling processes. However, if the flow 
surface is not significantly cooled by the radiative transfer, 
then the effective perimeter of the tube is that of the flow/wall 
rock boundary plus that of the cavity/wall rock boundary, and 
either the parallel plate approximation should be used for the 
entire perimeter or another problem geometry needs to be 
assumed. Until measurements of tube cavity temperatures are 
available, it will not be clear what approach is most 
appropriate. However, if a tube runs less than full, it is clear 
that neither a convective tube solution nor a conductive 

solution adequately explains the cooling near the vent. 
These convective models have other immediately apparent 

volcanologic uses, such as using the parallel plate model for 
considering the cooling during the emplacement of flood 
basalts [Ho and Cashman, 1997] as insulated internal flow. 
Note that these models should not be applied to turbulent 
flows, since heat transfer and flow rates in turbulent flow differ 
significantly from those in laminar flow. 

5. Conclusions 

For a range of moderate flow rates and tube entrance 
temperatures, a combination of forced convective cooling 
models for parallel plate and tube flow with constant wall 
temperature boundary conditions yields cooling rates near the 
tube entrance that are consistent with the Waha'ula and 

Kamoamoa tube temperature measurements, as well as minimal 
total cooling rates (<10ø-15øC)for flow lengths from 10 to 

200 km. The same forced convection cooling process may be 
applicable to explain the existence of similar flow 
morphologies for long tube-fed basaltic lava flows in a wide 
variety of locations, since no local variations in cooling 
conditions are required, and small variations in eruption 
temperature or flow rate can accommodate the entire range of 
flow lengths considered. Our analysis thus suggests that long 
basaltic flows may be a reflection of low slopes and a 
particularly steady, moderate, eruption rate, and the slow heat 
transfer may be characteristic of forced convective cooling 
rather than of a particular composition. 

Appendix: Convective Cooling Models 
for Tube and Parallel Plate Flow 

A1. Laminar Forced Convective Circular Tube 

Flow With Constant Wall Temperature 

This solution is known as the Gr•itz or Gr•itz-Nusselt 

problem and was originally solved for slug flow (flat velocity 
profile) by Gratz [1883]. It was re-solved for a parabolic 
velocity profile (Poiseuille flow) by Nusselt, Gr•itz, and others 
and was extended to cover the constant heat flux boundary 
problem as well as other boundary conditions and flow 
geometries. See Shah and London [1978], Burmeister [1993], 
or Kakaq and Yener [1995] for summaries of the problem 
development for both types of boundary conditions, and Shah 
and London [1978], Bird et al. [1987], Burmeister [1993], or 
Kakaq and Yener [1995] for comparisons of various cross- 
section and boundary condition solutions. 

For the circular full tube with a constant wall boundary 
temperature in laminar Newtonian flow, with no viscous 
dissipation, crystallization, or temperature dependent 
properties, and no conduction in the z direction, the energy 
equation is 

i)•-T 1 i)T PC v 
•r 2 + v z (A1) r •}r k •}z 

where Vz is the axial velocity distribution, the terms on the left 
are heat conduction in the r direction, and the term on the right 
is heat convection in the z direction [e.g., Bird et al., 1987, 
equation 4.4-7]. The at ½ompanying initial and boundary 
conditions are 

T = T e = const z < 0 (A2) 

T = T w = const r = a (A3) 

r=0 

(A4) 

The axial velocity distribution for Newtonian flow is 

(A5) 

where the mean velocity V = Q/A. 
The Gr•itz solution for the lava temperature as a function of 

distance down the tube uses separation of variables to obtain 
an infinite series solution in terms of eigenvalues and 
eigenfunctions. This approach is most accurate for distances 
far down the tube or pipe but can be unwieldy very close to the 
pipe entrance where the number of terms required for an accurate 
solution is very large. However, computational advances have 



27,482 SAKIMOTO AND ZUBER: FLOW AND CONVECrIVE COOLING IN LAVA TUBES 

made large summations tractable and the Gr•itz solution 
reasonable for the entire tube length in lava tube problems. In 
practice, considering tube temperatures within a few kilometers 
of the tube entrance requires at least 50 and sometimes several 
hundred terms, while accurate temperatures near the entrance 
(e.g., L< 50Dh) may easily require more than 500 terms. 
Solution accuracy is evaluated by increasing the number of 
terms until the dimensionless mean bulk temperature 
converges within the z* range desired. 

Since most lava flows or tubes are simply sampled for 
temperature as a function of either distance from the vent or 
time, solutions will be presented for the fluid bulk mean 
temperature T m, which is sometimes also called the flow 
average temperature or the mixing cup temperature. It is the 
temperature that would be obtained if, at the designated axial 
distance, the cross section of fluid was mixed before sampling. 

The Gratz expressions for the dimensionless fluid 
temperature and the dimensionless fluid bulk mean temperature 
[e.g., Burmeister, 1993; Shah and London, 1978] are 

0 '- t- t w = Z Cn an exp(-2•'2n z *), (A6) 
and 

= • = 8 •-exp(-2•nZ ) (A7) T e - T w n=Ol• n 

where •'n, Rn, and C,, are eigenvalues, respectively, 
eigenfunctions, and constants, and z* is the dimensionless 
axial distance 

ß z z zk (A8) 

D nPe DnRePr pCpVD 2 

or, if the solution is desired in terms of flow rate, 

rc zk (A9) 

4 pC•Q 

where Dh is the hydraulic diameter (=4areaYwetted perimeter 
[e.g., White, 1991]), D is the tube diameter, and Q is the 
volume flow rate. For volume flow rates from 1 m3/s to 103 

m3/s and tube lengths of less than 1000 km, z* ranges from 
10 '8 to 10 '•. The values of )•n, and G•=-(Cd2)R•'(1) have been 
tabulated in numerous sources, and the first 11 values are 

shown in Table A1 [Brown, 1960; Shah and London, 1978]. 

Table A1. Circular Pipe Infinite Series Solution Functions 
for a Constant Wall Temperature 

n 3• G• 

0 2.7043644199 0.748774555 

1 6.6790314493 0.543827956 

2 10.6733795381 0.462861060 

3 14.6710784627 0.415418455 
4 18.6698718645 0.382919188 
5 22.6691433588 0.358685566 

6 26.6686619960 0.339622164 
7 30.6683233409 0.324062211 
8 34.6680738224 0.311014074 

9 38.6678833469 0.299844038 
10 42.6677338055 0.290124676 

Brown [1960] and Shah and London [1978, Table 12]. 

Values for the higher (n > 11) eigenvalues and eigenfunctions 
may be calculated from Shah and London [1978, equations 
(204) through (207)] 

•n = • q- S1 •-4/3 q- S2 •-8/3 q- S3 •-10/3 q- S4 •-11/3 q- O•-14/3 (A10) 

where 

)•=4n+(8/3) n=11,12,13... 

S• = 0.159152288 

S2 = 0.011486354 (A11) 

S 3 = - 0.224731440 

S4 = - 0.033772601 

and R n' and C n may be expressed as Gn=-(Cd2)Rn'(1), and 
calculated from 

G n = 1 + •77 + •77 + •'77 + •677 + •'•' + 
where 

Gn=-(Cn/2) R'n(1) 

)•=4n+(8/3) n=11,12,13... (A13) 

and 

C = 1.012787288 

B• = 0.144335160 

B2 = 0.115555556 

B 3 -' - 0.21220305 (A14) 

B 4 = - 0.187130142 

B 5 = 0.0918850832 

Calculating R n for evaluating equation (A6) requires slightly 
more effort, since it is a function of both n and r/a. It may be 
evaluated with the series 

g n = Zgni - (A15) 
i=O k a ,/ 

where A.i is a function of the eigenvalues (X.) 

Ani---O i<0 

Ani-- 1 i=0 (A16) 

Ani = -•,n2(Ai.2 - Ai_4)/i 2 

[Brown, 1960]. Brown [1960, Table 2] reports R• through R 6 
for 20 values of r/a between 0 and 1 that may be used for 
solution comparison. 

The Nusselt number is defined as Nu = hD/k, where h is the 
heat transfer coefficient (a function of Re, Pr, L, and D or Q). 
Nu is a dimensionless temperature gradient averaged over the 
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tube walls and is frequently used for comparing convection 
solutions. For solutions where the temperature gradient is a 
function of location, a local Nusselt and mean Nusselt number 
are usually defined, where the local Nusselt number is a measure 
of the heat transfer at any specified location and the mean 
Nusselt number is a measure of the heat transfer for the whole 
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Figure A1. Graph of the constant wall temperature circular 
tube flow solution. (a) The dimensionless distance variable z* 
as a function of distance and flow rate (p, k, and Cp values are 
given by Table 1), (b) the dimensionless bulk mean 
temperature 0 m as a function of the dimensionless distance, and 
(c) the local Nusselt number Nuz. r as a function of the 
dimensionless distance. 

problem domain. The local and mean Nusselt numbers Nuz, r and 
Nttm, r for this solution are 

2 

ZT=oGnexp(-2)Cn z ) 
(A17) Nttz, , = 2Z•,=o(Gn/•,2n)exp(_2•,2nZ.) 

and 

(A18) 

As a check, tabulated results for z* versus 0 m are reported by 
Shah and London [1978; Table 13] for some of the values of z* 
considered in lava tube flow. Figure A1 is a plot of this 
solution in dimensionless variables for use in estimating the 
cooling without calculating the full numeric summation of 
equation (A7). It can be used by determining z* from equation 
(A9) or estimating it from Figure Ala. Figure Alb and the z* 
value are then used to estimate the 0m value. With this, the 
equation for 0 m from Table 1 and the assumed wall and entrance 
temperatures, the mean bulk fluid temperature for any particular 
tube and flow rate may be estimated. Figure Alc is the local 
Nusselt number versus z* from equation (A17)and may be used 
for comparing the dimensionless heat out of the flow relative 
to other solutions. 

A2. Laminar Forced Convective Parallel Plate 

Flow With Constant Wall Temperature 

The Gr•itz-Nusselt solution for the dimensionless fluid bulk 

mean temperature for flow between parallel plates is similar t o 
the circular tube flow solution, but simpler. For parallel plate 
flow, we have [Nusselt, 1923; Sellars et al., 1956; Shah and 
London, 1978, equations (294) through (298)] a dimensionless 
fluid temperature 

0 -' r r w = E CnYn exp -T•nZ , (A19) 
and a dimensionless mean bulk temperature 

Om = Tm-Tw --3••-•expl-••2n z*) T e -Tw n=O n 
(A20) 

where, )•'n, rn, and C n are eigenvalues, eigenfunctions, and 
constants, G, =-(C,/2)Yn'(1), and z* is the dimensionless 
axial distance 

z z ß (A21) 

DiRe Dh Re Pr 

For a plate separation of 2d and a flow width of w, D n = 4d, 
and z* in terms of a volume flow rate is 

zkw . (A22) 

8pC•,Qd 

The first 10 (0 _< n < 9) values of •n and G n are shown in 
Table A2 [Brown, 1960; Shah and London, 1978]. Values for 
the higher (n > 10) eigenvalues and constants are calculated 
from 

5 

•n =4n+•-, n = 10,1 1,12... (A23) 
and G n is given by 

G n = 1.01278729•} 1/3 , (A24) 
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Table A2. Parallel Plate Infinite Series Solution Functions 

for a Constant Wall Temperature 

n •n Gn 

mean bulk fluid temperature for any particular tube and flow 
rate may be estimated. Compare the local Nusselt numbers 
versus z* in Figures Alc and A2c to see the differences in the 
peripheral heat losses, and note that the parallel plate solution 

0 1.6815953222 0.858086674 
1 5.6698573459 0.569462850 
2 9.6682424625 0.476065463 
3 13.6676614426 0.423973730 

4 17.6673735653 0.389108706 
5 21.6672053243 0.363465044 
6 25.6670964863 0.343475506 
7 29.6670210447 0.327265745 
8 33.6669660687 0.313739318 

9 37.6669244563 0.302204200 

Brown [1960] and Shah and London [1978, Table 30]. 

and may be used to also find C,Y, (G, = -(C•/2)Y•'(1)) [Sellars 
et al., 1956; Shah and London, 1978, equations (297) and 
(298)]. Calculating Y• for evaluating equation (A19) requires a 
method similar to that in the round tube constant temperature 
solution for R•. Like R,, Y• varies with both n and y/d. It may 
be evaluated with the series 

• i 

Yn = E gni (-"y ) (A25) 
•--o •.dJ 

where E•i is a function of the eigenvalues (•) 

E•i=0 i <0 

E,•=I i=0 (A26) 

E•, = -)•2(E•. 2 - E•.4)/i(i- 1) 

[Brown, 1960]. Brown [1960, Table 5] reports Y• through Y6 
for 20 values of y/d between 0 and 1 that may be used for 
solution comparison. 

The local and mean Nusselt numbers Nu•r and Nu•r for this 
solution are 

and 

Nuz r = (A27) 

' 3 E7=o(Gnl•2n)eXpl_ 32-2 ß '• -•nz ) 

NlgmT = l---rlnl l--). 
' 4Z [•OmJ 

(A28) 

As above, tabulated results of 0 m and Nuz, r versus z* are reported 
by Shah and London [1978, Table 31] for solution 
comparisons for some of the larger values of z* encountered in 
lava tubes. Figure A2a shows z* versus z for a range of flow 
rates. As is indicated by equation (A22), increasing the flow 
width by a factor of 10 is equivalent to decreasing the flow rate 
by a factor of 10. Figures A2b and A2c show 0m and Nuz, r versus 
z* from equations (A20) and (A27), respectively. As for the 
tube flow solution shown in Figure A1, Figure A2 may be used 
in estimating the cooling without calculating the full numeric 
summation of equation (A20). Determine z* from equation 
(A22) or estimate it from Figure A2a. Figure A2b is then used 
to estimate the 0• value. With this, the equation for 0• from 
Table 1 and the assumed wall and entrance temperatures, the 
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Figure A2. Graph of the constant wall temperature parallel 
plates flow solution. (a)The dimensionless distance variable 
z* as a function of distance and flow rate (p, k, and Cp values 
from Table 1), the solid lines and flow rate contour labels are 
for a flow width of 5 times the plate spacing, the gray lines and 
flow rate contour labels are for a flow width of 12 times the 
plate spacing, (b) shows the dimensionless bulk mean 
temperature 0 m as a function of the dimensionless distance, and 
(c) shows the local Nusselt number Nu•,r as a function of the 
dimensionless distance. 
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has a higher Nusselt number for the same z*. This is a 
reflection of the differences in the hydraulic diameter, or the 
ratio of the cross section area to the length of the perimeter 
losing heat. The longer perimeter of the parallel plate solution 
relative to the circular tube solution allows a greater loss of 
heat. 

A3. Laminar Forced Convective Circular Tube 
Flow With Constant Wall Heat Flux 

For the circular tube constant wall heat flux convection 

problem, the problem is the same as that of the circular tube 
with constant wall temperature except for the boundary 
condition 

As before, we have 

qw = const r = a. (A29) 

• zk 
z* = --• (A30) 

4 pCvQ 

but here the dimensionless fluid temperature is 

0 = (q'•7k) = 4z* + - 8 k, a • • 
+-•CnR n exp(-2[•n2Z*• 2 n-• 

the dimensionless mean bulk temperature is 

Tm-Te =4z* Om = (qwOh/k ) 

(A31) 

(A32) 

Table A3. Circular Tube Infinite Series Solution Functions 

for the Constant Wall Heat Flux 

n •n 2 -Cngn(1) 

1 25.679611 0.19872216 
2 83.861753 0.06925746 

3 174.16674 0.03652138 

4 296.53630 0.02301407 
5 450.94720 0.01602945 

6 637.38735 0.011906317 
7 855.849532 0.009249488 

8 1106.329035 0.007427222 
9 1388.822594 0.006117477 
10 1703 327852 0 005141193 

11 2049.843045 0.004391938 
12 2428.366825 0.003803024 
13 2838.898142 0.003330824 
14 3281.436173 0.002945767 

15 3755.980271 0.002627194 

16 4262.529926 0.002360296 

17 4801.084.748 0.002135757 

18 5371.644444 0.001940852 
19 5974.208812 0.0071774030 

20 6608.777727 0.001628990 

Siegel et al. [1958], Hsu [1965], and Shah and London [1978, 
Table 17]. 

As before, we have 

qw = const for y = d. (A37) 

ß z z zkw (A38) 

DnPe Dn Re Pr 8pCvQd 

and 

0 w Tw - Te - 4z*+11 1 exp(_2[ln2Z .) = - +--•CnRn(1 ) (A33) 
(qwDn/k) 48 2n=l 

where [l n, R n, and C n are eigenvalues, eigenfunctions, and 
constants, and equation (A33) can be used to find the wall 
temperature for any given flow rate [Sellars et al., 1956; Siegel 
et al., 1958]. The first 20 values for 13n 2, and C n Rn(1) are in 
Table A3 [Siegel et a/.,1958; Hsu; 1965; Shah and London, 
1978], and the higher (n >20) eigenvalues, functions, and 
constants may be calculated from [Hsu; 1965; Shah and 
London, 1978] 

4 

•n = 4n +-•, n = 21,22,23... (A34) 
and Cn Rn may be calculated with 

C n R n (1) = -2. 40100604513 ?3. ( A 35) 
The local Nusselt number is 

NUz, n = 0 w - 4z* = +• + -- Z CnRn(1)exp --2[ln 2z *, (A36) 
48 2 n=l 

and flow solutions can be checked for accuracy against the 
tabulation of selected values of z* and Nu•,n by Shah [1975] and 
Shah and London [1978]. 

A4. Laminar Forced Convective Parallel Plate 

Flow With Constant Wall Heat Flux 

The problem is the same as that of the parallel plate with 
constant wall temperature except for the boundary condition 

but here the dimensionless fluid temperature is [Cess and 
Shaffer, 1959] 

T-Te = 4z .+ 1_• 1 39 (qwDn/k) -'• 1120 

+-- •, CnY n exp -•15.2z 
4 n=l 

(A39) 

the dimensionless mean bulk temperature is 

Tm-Te =4z* Om=(qWDh/k) (A40) 

and 

= - 17 Ow T w T• =4z'4-• 
(qwDh/k) 140 

+-- E CnYn (1)exp - 13n2Z 
4 n=l 

(A41) 

where [•n, Yn, and C n are eigenvalues, eigenfunctions, and 
constants, and equation (A37) can be used to find the wall 
temperature for any given flow rate. The first 10 values for [l n, 
and C n Yn are in Table A4 [Cess and Shaffer, 1959; Sparrow et 
al., 1963; Shah and London, 1978] The higher (n >10) 
eigenvalues, functions, and constants may be calculated from 
[Cess and Shaffer, 1959; Shah and London, 1978] 

1 

•n =4n+-•, n = 1 1,12,13... (A42) 
and 

CnY n (1) = --2.40100604513? 3 . (A43) 
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Table A4. Parallel Plate Infinite Series Solution Functions 

for the Constant Wall Heat Flux 

n [Sn 2 -CnL(1) 

1 4.287224 0.2222280 
2 8.30372 0.0725316 
3 12.3106 0.0373691 
4 16.3145 0.0232829 

5 20.3!71 0.0161112 
6 24.3189 0.0119190 
7 28.3203 0.0092342 
8 32.3214 0.0074013 
9 36.3223 0.0060881 
10 40.3231 0.0051116 

Sparrow et al. [1963] and Shah and London [1978, Table 33]. 

The local Nusselt number is 

Nuz, H = 0 w - 4z* = -- 
17 

140 
+--EC•Y•(1)exp- [•2nZ ,(A44) 

4 n=l 

and flow solutions can be checked for accuracy against the 
tabulation of selected values of z* and Nuz. H by Shah [1975] and 
Shah and London [ 197 8]. 
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