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a b s t r a c t

On 14 January and 6 October 2008 the MESSENGER spacecraft passed within 200 km of the surface of
Mercury. These flybys by MESSENGER provided the first observations of Mercury from a spacecraft since
the Mariner 10 flybys in 1974 and 1975. Data from the Mercury Laser Altimeter (MLA) provided new
information on the equatorial shape of Mercury, and Doppler tracking of the spacecraft through the flybys
provided new data on the planet’s gravity field. The MLA passes were on opposite hemispheres of the pla-
net and span collectively �40% of the equatorial circumference. The mean elevation of topography
observed during flyby 1, in the longitude range 0–90�E, is greater than that seen during flyby 2 in the lon-
gitude range 180–270�E, indicating an offset between centers of mass and figure having a magnitude and
phase in general agreement with topography determined by Earth-based radar. Both MLA profiles are
characterized by slopes of �0.015� downward to the east, which is consistent with a long-wavelength
equatorial shape defined by a best-fitting ellipse. The Doppler tracking data show sensitivity to the grav-
itational structure of Mercury. The equatorial ellipticity of the gravitational field, C2,2, is well determined
and correlates with the equatorial shape. The S2,2 coefficient is �0, as would be expected if Mercury’s
coordinate system, defined by its rotational state, is aligned along its principal axes of inertia. The recov-
ered value of the polar flattening of the gravitational potential, J2, is considerably lower in magnitude
than the value obtained from Mariner 10 tracking, a result that is problematic for internal structure mod-
els. This parameter is not as well constrained as the equatorial ellipticity because the flyby trajectories
were nearly in the planet’s equatorial plane. The residuals from the Doppler tracking data suggest the
possibility of mascons on Mercury, but flyby observations are of insufficient resolution for confident
recovery. For a range of assumptions on degree of compensation and crustal and mantle densities, the
allowable crustal thickness is consistent with the upper limit of about 100 km estimated from the
inferred depth of faulting beneath a prominent lobate scarp, an assumed ductile flow law for crustal
material, and the condition that temperature at the base of the crust does not exceed the solidus temper-
ature. The MESSENGER value of C2,2 has allowed an improved estimate of the ratio of the polar moment of
inertia of the mantle and crust to the full polar moment (Cm/C), a refinement that strengthens the conclu-
sion that Mercury has at present a fluid outer core.

� 2010 Elsevier Inc. All rights reserved.
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1. Introduction

The first spacecraft to approach Mercury was Mariner 10.
Launched in 1973, the spacecraft successfully completed three fly-
bys of the innermost planet in March and September 1974 and
March 1975 and provided most of our current knowledge of the
planet until early 2008. Mariner 10 was the first spacecraft to
use the flyby of a planet (Venus) as a gravity assist to reach its tar-
get body (Mercury). For two of the Mariner 10 flybys the spacecraft
flew sufficiently close to the planet to enable the mass, gravita-
tional polar flattening, and gravitational equatorial ellipticity of
Mercury to be estimated. Earth-based radar observations compiled
by Anderson et al. (1996) indicated a nearly spherical planet,
slightly flattened at the poles, and with a mildly elongated equator.
The MErcury Surface, Space ENvironment, GEochemistry, and
Ranging (MESSENGER) spacecraft, only the second probe to
encounter the innermost planet, flew by Mercury on 14 January
and 6 October 2008. At the time of those flybys, the first two of
three in all, the values of Mercury’s mass and gravity field obtained
by Mariner 10 were the a priori values used for the trajectory cal-
culations that placed the MESSENGER spacecraft within 200 km of
the surface at closest approach.

The MESSENGER payload includes the Mercury Laser Altimeter
(MLA) (Cavanaugh et al., 2007) and a gravity science investigation
that uses the spacecraft tracking system (Srinivasan et al., 2007).
During both of the first two flybys the laser altimeter was operated
while within range of the planet and the spacecraft was tracked at
X-band frequency by the Deep Space Network (DSN), the latter
providing high-quality Doppler range-rate observations of the
spacecraft motion relative to Earth. During those flybys, the space-
craft was within 100,000 km of the planet for �10 h. The inertial
direction of the spacecraft was changed by approximately 20� by
each encounter. The ground tracks of both flybys across the surface
of the planet were almost equatorial at �5� south latitude and on
opposite sides of the planet. The MLA ranged to the surface of the
planet near closest approach on each flyby for �10 min, and data
collected are used in this paper to derive the physical shape of Mer-
cury’s equatorial region. The Doppler tracking data are used to esti-
mate the mass and long-wavelength gravity field of Mercury.

During flyby 1 (M1), MESSENGER was in the shadow of Mercury
for�13 min, which included the point of closest approach, and was
eclipsed from Earth for 48 min, emerging from behind the planet a
few minutes prior to closest approach. Subsequent to the flyby, the
spacecraft velocity vector was approximately aligned with the line-
of-sight direction to Earth. During flyby 2 (M2), the spacecraft was
in full sunlight throughout the encounter and was observable from
Fig. 1. Altitude of MESSENGER near closest approach on flybys 1 and 2 showing
coverage of MLA and the effective altitude limit of gravity field sensitivity of �2
Mercury radii.
Earth for the entire time with a direction of travel approximately
perpendicular to the Earth-MESSENGER direction, so the Doppler
signal was largely the radial component of velocity with respect
to the planet.

The Mercury-MESSENGER range during the closest part of the
two encounters is shown as a function of planetary longitude in
Fig. 1. The figure illustrates that the spacecraft traversed 75% of
the span of longitudes on the planet on the two flybys at altitudes
of less than 2 Mercury radii and therefore was perturbed primarily
by the longest wavelengths of the Mercury gravity field, i.e., those
of degree and order 2. Fig. 1 also shows the coverage obtained by
MLA.

During flyby 3, on 29 September 2009, the MESSENGER space-
craft unfortunately entered safe mode shortly before closest ap-
proach. No altimetry data were collected, and no tracking that
could be used to improve the equatorial shape was obtained.

2. Tracking and altimetry data sets

2.1. Altimetry

MLA is a single-beam laser altimeter with a beam divergence of
100 microradians illuminating, when nadir pointed, a 20-m-diam-
eter spot from 200-km altitude and a 100-m-diameter spot from
1000 km (Cavanaugh et al., 2007). The laser pulse rate is 8 Hz, so
the distance between measurements is about 500 m when the
spacecraft orbital velocity is 4 km/s. During the flybys the nominal
velocity of the spacecraft across the surface was 5–6 km/s (Solo-
mon et al., 2008). The normal operating state of MLA during flyby
operations was not nadir oriented because of the requirement that
the spacecraft be oriented so that its sunshade protects the instru-
ments from direct sunlight (Santo et al., 2001). Consequently, the
area illuminated by MLA was generally elliptical in shape, which
has the effect of spreading the laser return pulse and decreasing
the accuracy of the range measurement depending on the emission
angle, e, the angle between the range vector and the surface
normal.

The ranges to the surface and emission angles are shown in
Fig. 2 for both flybys, and Fig. 3 shows the altimetry coverage. On
both flybys altimetry data were obtained at an initial range of
700–800 km at e of nearly 70�. This ability to range continuously
at such large emission angles is a result of stronger signal return
than expected, attributable in part to the structure and roughness
of Mercury’s surface (Zuber et al., 2008). Towards the end of both
tracks MLA became nadir pointed and continued to range to the
surface out to distances of nearly 1700 km, greater than the de-
signed range of about 1200 km (Sun et al., 2004; Cavanaugh
et al., 2007).

The nominal range precision of MLA is approximately ±10 cm
on flat surfaces with strong signals (Cavanaugh et al., 2007). How-
ever, the range variation and the large emission angles during the
flybys degrade the precision by approximately 1/cos(e). The accu-
racy is dependent on the knowledge of the spacecraft position, par-
ticularly in the direction radial to the planet. During the flybys the
orbital position with respect to the center of mass of Mercury is be-
lieved to be at the tens-of-meters level in the radial direction and
Fig. 2. Range and emission angle for MLA during MESSENGER flybys 1 and 2.



Fig. 3. MLA elevations and coverage for flybys 1 and 2. Elevations are with respect
to a sphere of radius 2440 km (Zuber et al., 2008). The two flybys were on opposite
sides of the planet and covered a total of about 170� in longitude or 41% of the
equatorial circumference. Also shown is a spherical harmonic degree-2 fit to the
altimetry (in dark blue) and the fit with the degree-1 terms associated with the
COF-COM offset removed (in light blue) for comparison with the geoid, which does
not contain these terms. The geoid is shown in purple, but note the different vertical
scale from that for the altimetry. The general correspondence between the
equatorial shape and the geoid is apparent.

Fig. 4. Doppler tracking residuals relative to the a priori gravity model from Mariner
10 (Anderson et al., 1987) for 12 h centered approximately on the points of closest
approach for the two flybys. On flyby 1, immediately before closest approach, the
spacecraft was occulted from Earth for 47 min. The figures are on the same vertical
scale, and it is probable if the spacecraft had not been occulted by the planet that
the residual would have been of similar size to that for flyby 2.
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places a probable accuracy limit on the radii derivable from the
altimetry data. Unfortunately, the accuracy cannot be rigorously
verified, although comparison with radar data suggests a probable
accuracy of 16 m (cf. Section 3.3 and Table 1).
2.2. Doppler tracking

The MESSENGER spacecraft was tracked during both flybys by
the DSN at X-band frequency, �8.4 GHz, with a quality of order
0.1 mm/s at a 10-s rate (Srinivasan et al., 2007). For both flybys
we analyzed 14-day spans of data centered on the time of closest
approach. In both cases the distance of the spacecraft from the pla-
net 7 days before and after closest approach was approximately
3 � 106 km. The total data set consists of �123,000 Doppler
observations.

During flyby 1 the spacecraft was tracked by the DSN through-
out the encounter except for a period of approximately 45 min
prior to closest approach when MESSENGER was occulted by the
planet (as viewed from Earth). The probe emerged from behind
the planet approximately 5 min before closest approach, when
tracking of the spacecraft resumed.

The residuals to the tracking data during the 12 h centered on
closest approach for each flyby, relative to predictions using the
gravity model derived previously from Mariner 10 (M10) tracking
(Anderson et al., 1987), are shown in Fig. 4. If the M10 field were
able to satisfy the MESSENGER tracking data, the residual pattern
would be flat except for any unmodeled systematic errors. The
amplitudes and pattern of the residuals indicate that improvement
in the modeling of the forces on the spacecraft, principally gravity,
is required.
3. Equatorial shape

3.1. Mean radius and equatorial axes

A plot of the MLA data versus longitude reveals qualitative
information about the equatorial shape of Mercury (Fig. 3). The
Table 1
Equatorial shape parameters. The quantities a and b are axes of the ellipse fit to equatoria
projection of the COF-COM offset, and u1 is the longitudinal direction of this component.

MLA Anderson et al. (1996)

(a � b)/a � 106 664 ± 29 540 ± 54
u2, �E �12.5 ± 1.0 �15.3 ± 2.9
F1, m 683 ± 146 640 ± 78
u1, �E 62.2 ± 7.3 40.5 ± 6.9
mean elevation of the M1 data (first quadrant, 0–90�E) is greater
than the mean of the M2 data (third quadrant, 180–270�E), indicat-
ing the general direction of the offset of the center of figure (COF)
from the center of mass (COM). Both MLA profiles show similar
slopes of �0.015� downward to the east, which combined with
the �180� difference in longitudinal location of the profiles is
indicative of the long-wavelength equatorial shape.
3.2. Spherical harmonic expansion of equatorial shape

Quantitatively, the long-wavelength shape of the equator can
be obtained from a second-degree spherical harmonic expansion
of the M1 and M2 MLA data. Because of the limited latitude range
of the data (99.9% lie in the range 0–5�S), a least-squares solution is
unstable if latitude-dependent terms are included. By making the
approximation that the 13,234 MLA observations were all acquired
at the equator, a stable five-term, longitude-only expansion results.
The spherical harmonic coefficients estimated are the assumed
mean radius perturbation, c0,0; the first-degree terms c1,1 and s1,1,
which are directly related to the magnitude, F1, and orientation,
u1, of the equatorial projection of the COF-COM offset; and the sec-
ond-degree terms c2,2 and s2,2, which are directly related to the
magnitude (a � b) and orientation, u2, of the elliptical shape of
an equator having semi-major and semi-minor axes a and b,
respectively, where all double subscripts are respectively harmonic
degree and order.

The equatorial elevation curve resulting from the fit to the M1
and M2 data is shown in Fig. 3 for the full set of five spherical har-
monic coefficients. A curve is also shown with the degree-1 terms
removed for better comparison to the geoid, as these terms do not
appear in the gravitational potential for a COM-centered coordi-
l topography, u2 is the orientation of the a axis, F1 is the magnitude of the equatorial

Radar, 1978–1997 MLA + radar, rMLA = 16 m

612 ± 250 636 ± 139
�24.4 ± 5.3 �13.5 ± 1.2

614 ± 296 639 ± 170
52.9 ± 17.9 52.4 ± 5.6
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nate system. The correlation of the equatorial shape with the geoid
is evident.
3.3. Comparison with Earth-based radar topography

It is of interest to compare the equatorial shape of Mercury
determined by MLA with observations from Earth-based radar that
previously sampled low-latitude regions of Mercury (Anderson
et al., 1996). Table 1 presents a comparison of MLA with two differ-
ent radar solutions.

In the first case (Anderson et al., 1996), results for the radar-de-
rived shape were obtained as part of a Solar System ephemeris
solution that contained 73,535 observations (of which 629 were
radar ranging observations acquired during the period 1966–
1990) and 189 solved parameters (of which nine describe the
shape of Mercury).

In the second case, radar shape results were obtained from data
that include newer radar observations (1991–1997) provided by
J.D. Anderson and that exclude the noisier data acquired before
1978. For this case, the spherical harmonic model coefficients
(which included the latitude-dependent Legendre polynomial
terms) were obtained by a fit to 378 radar elevations that were
the range residuals from an ephemeris program, rather than esti-
mated in a simultaneous solution within the ephemeris program.
Employing a standard weighting scheme of inverse uncorrelated
variance, a least-squares solution using the 1-r values reported
in the radar data set yields results that are reasonably close to
the MLA results. The differences are less than 15%, with the notable
exception of the orientation of the equatorial shape ellipse, u2 (a
12� difference). The longitudinal sampling of MLA provided by
the M1 and M2 geometries and the large number of observations
place a strong constraint on u2.

We combined the complete radar data set (724 radar ranging
points) with the MLA data set and obtained a weighted least-
squares solution (Table 1) by treating the error in the MLA data
as a single variable parameter, rMLA. The most important geophys-
ical shape parameter is arguably u2 because of the possible corre-
lation of second-degree shape with the corresponding gravitational
equatorial ellipticity (defined by the equatorial moments of inertia,
A and B). Fig. 5 plots the standard deviation of the fit, rfit, and u2
Fig. 5. Orientation, u2, of the a axis of the equatorial shape ellipse estimated from
the combined MLA and radar data sets plotted as a function of assumed error, rMLA,
in MLA elevation values. Also plotted is the standard deviation, rfit, of the weighted
fit, with the best fit occurring for rMLA = 16 m, for which u2 = (�13.5 ± 1.2)�E. As
rMLA becomes small, the solution is dominated by MLA data. Because the solution
contains latitude-dependent terms, it starts to become unstable, leading to rapid
increases in rfit and the error in the u2 estimate. The results for small rMLA should
not be compared to the MLA-only value of u2 in Table 1, as the latter was obtained
from a latitude-independent model.
against rMLA, and the best fit occurs at rMLA = 16 m, for which
u2 = �13.5 ± 1.2�E. Excluding the radar data before 1978 decreases
u2 to �9.3 ± 1.8�E.

All radar-only or radar/MLA solutions that we examined have
unstable estimates of the z (orthogonal to equatorial plane) com-
ponent of the COF-COM offset, meaning that different strategies
for data inclusion (e.g., radar-only over different acquisition inter-
vals, combined radar and MLA solutions) lead to substantially dif-
ferent results. The only common behavior is that the center of
figure is always shifted to the northern hemisphere. The equatorial
projection of the COF-COM offset, F1, is stable under the same cir-
cumstances (e.g., Table 1) with a magnitude in the range �600–
700 m.

4. Gravity model development

4.1. Spherical harmonic solutions

The solutions for the orbit and gravity field were conducted in a
Mercury-centered coordinate system using the standard expres-
sion (Kaula, 1966) for the gravitational potential in terms of nor-
malized spherical harmonic coefficients, Cl,m and Sl,m of degree l
and order m, where the normalization, Nl,m (Kaula, 1966) is

Nl;m ¼ ½ðl�mÞ!ð2lþ 1Þð2� d0;mÞ=ðlþmÞ!�1=2
; ð1Þ

and d0,m is the Kronecker delta.
The software used for the analysis was the NASA Goddard Space

Flight Center GEODYN Program System (Rowlands et al., 1993;
McCarthy et al., 1994). We initially processed each flyby separately
(Fig. 4), and we subsequently produced a series of joint solutions
for the two trajectories, gravity field parameters (spherical har-
monic coefficients, surface mass anomalies, or some combination),
and a set of parameters that described the area/mass of the space-
craft, position of the phase center of the antenna, and related
quantities.

Tracking data covering 6–14 days centered on the flyby were
analyzed, including data obtained outward to approximately
3 � 106 km distance from Mercury. To ensure that we included
all data sensitive to Mercury’s gravity field, we obtained solutions
for data sets covering 6, 8, 10, 12, and 14 days.
Table 2
Major parameters adjusted, modeled, or estimated in the solutions. The uncertainties
are the formal errors based on a data weight of 1 cm/s and need to be adjusted.

Parameter Modeled/estimated/
adjusted

A priori value

GM Estimated 22032.09 km3 s�2;
M10a

Gravity coefficients Estimated J2 = 6.0 � 10�5;
C2,2 = 1.0 � 10�5;
M10a

Antenna location Estimated in some
solutions; modeled

SPICEb kernels

Spacecraft attitude Modeled SPICE kernels
Solar radiation Estimated
Position of Mercury Adjusted in some

solutions
DE421c

Doppler biases Estimated in some
solutions

None

Spacecraft shape Modeled Box and plate
Mercury albedo Not included None

Estimated: parameter value obtained in the solution.
Modeled: parameter values assumed/obtained from external source.
Adjusted: a priori value of parameter changed.

a Mariner 10 results (Anderson et al., 1987).
b SPICE = kernels containing information on Spacecraft ephemeris; Planet, satel-

lite, or comet ephemeris; Instrument description; C-matrix (pointing); Events.
c DE = dynamic ephemeris.



ig. 6. Ratio of planetary flattening C2,0 compared to Mercury’s central mass term.
lose to the planet the influence of the flattening is �10�5. At three Mercury radii
e comparative influence is �10�6. The data used in the analysis extended to over

200 radii (�3 � 106 km).
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The parameters we included in the analysis are shown in Ta-
ble 2, either as estimated or modeled parameters. For some of
these parameters we had good a priori values, such as the attitude
information, and for others including the gravity field and the po-
sition of Mercury, we needed to estimate or change from solution
to solution to assess whether they were important or if their values
could influence the solution for other parameters.

The primary parameter that we used to assess the quality of the
estimated solution for the gravity field was the range of the data
residuals from a data reduction run around the time of closest ap-
proach. In Fig. 4 these values were 4.3 cm/s and 14.2 cm/s for fly-
bys 1 and 2, respectively, and these figures were used to assess
the field derived from Mariner 10 tracking data.

Our initial solutions estimated only the GM term in the gravita-
tional potential, where G is the universal constant of gravitation
and M is the mass of Mercury, on the assumption that all other
gravity coefficients were zero. Estimates were made for the indi-
vidual flybys and combined. Subsequent solutions included the
C2,0 and C2,2 terms, all others being set to zero, and also solutions
including S2,2. Table 3 shows solutions for GM and second-degree
gravity potential coefficients obtained simultaneously with the fly-
by trajectories using a data weight of 1 cm/s. The table also shows
the results from Mariner 10 (Anderson et al., 1987) converted to
their normalized values for comparison. The latter were the a priori
values for analysis of the MESSENGER data. Unfortunately, the
Mariner 10 tracking data have been lost and are therefore no long-
er available for re-analysis in combination with the MESSENGER
tracking data.

The results in Table 3 for GM are all less than the Mariner 10 va-
lue, but they are within the M10 error bars, and this outcome was
consistent throughout the analysis of the MESSENGER flybys and
the many solutions we obtained and investigated. The two values
for C2,0 are both very small, and they are noticeably affected by
the inclusion of the S2,2 coefficient in the solution. The low value
of C2,0 presents geophysical difficulties, discussed in Section 5.2.
It can be argued, of course, that trying to obtain an estimate of
C2,0 (representing the gravitational polar flattening) only from
near-equatorial tracking data is challenging. However, the solution
was a free adjustment, and the formal standard deviation is only
50% larger than that of C2,2, which represents the gravitational
ellipticity of the equator and which we believe is well determined
on the basis of the good equatorial coverage from the two flybys.
Fig. 6 shows the comparative sensitivity of GM and C2,0 in the equa-
torial plane as a function of distance from the planet for a normal-
ized C2,0 = �0.89 � 10�5 (equivalent to J2 = 2 � 10�5), one of the
smaller values of C2,0 obtained in our solutions. Fig. 6 indicates that
C2,0 contributes 10�5 of GM when close to Mercury, diminishing to
zero at distance. This contribution is equal to the change in GM that
we observe in the MESSENGER solutions from the Mariner 10 re-
sults and is separable if sufficient coverage in data is employed. Ta-
ble 3 shows that GM adjusts to the lower value even when C2,0 is
not adjusted, indicating independence from C2,0.
Table 3
Solutions for GM and normalized gravity field. All the MESSENGER solutions involved free
values are not shown.

Solution GM (km3 s�2) C2,0 (1.0 � 10�5) C2,2 (1.0

Mariner 10 22032.08 ± 0.9 �2.68 ± 0.9 1.55 ± 0
Flyby 1a 22032.08 �2.68 1.55
Flyby 2a 22032.08 �2.68 1.55
Flybys 1 and 2 22031.77 ± 0.07
Flybys 1 and 2 22031.81 ± 0.07 �0.94 ± 0.37 1.30 ± 0
Flybys 1 and 2 22031.77 ± 0.07 0.61 ± 0.41 1.31 ± 0

CA denotes closest approach.
a No adjustment of gravity coefficients.
F
C
th
1

The two MESSENGER values of C2,2 shown in Table 3 are the
same within any reasonable error estimate and are consistent with
the Mariner 10 result. The estimate of S2,2 was obtained because
none of the prior solutions had reduced the spread of Doppler
residuals around closest approach to less than 2 or 3 cm/s, suggest-
ing that major sources of gravity signal remained to be identified.
For geophysical reasons (see Section 5.1), the value of S2,2 is ex-
pected to be identically zero, so estimating its value represents a
mechanism for making an assessment of the quality of the field.

The right column of Table 3 shows the spread of the Doppler
residuals at closest approach. The table suggests that improving
the value of GM, even with zero values for the other gravity coeffi-
cients, makes a substantial improvement in the spread of residuals.
Adjusting S2,2 does nothing for the residual range but does change
GM and C2,0, making both smaller in amplitude.

The relatively large remaining Doppler residuals around closest
approach suggested that we needed to increase the number of
gravity parameters and explore other possible causes of the resid-
ual pattern. The gravity representations we examined included
gravity anomalies near the ground tracks and 3 � 3 and 4 � 4
spherical harmonic solutions (i.e., fully expanded to degree and
order 3 and 4). In addition, we assessed the influence of an error
in the position of Mercury, errors in our solar radiation model for
the spacecraft, biases in the Doppler tracking, and the effect of
the solar gravity tide expressed through the Love number, k2. None
of these additional effects produced any significant improvement
or change in the residual pattern.

We obtained a series of spherical harmonic solutions starting
from the combined solution in Table 3 for GM, C2,0, and C2,2 as a pri-
ori with all other coefficients assumed to be initially zero. Our solu-
tions included a 3 � 3 model, a 4 � 4 model, and one 4 � 4 solution
that included the C2,1 and S2,1 coefficients that had not been
adjustments of the parameters, including orbit and gravity coefficients, except where

� 10�5) S2,2 (1.0 � 10�5) Residual range at CA M1/M2 (cm/s)

.8
4.3
14.2
1.9/5.5

.28 2.1/3.0

.28 �0.62 ± 0.34 2.8/2.0



Table 4
Values of GM and spherical harmonic solutions to degree and order 3 and 4. These solutions were constrained by the application of a standard deviation for the a priori value of the
coefficient. The standard deviation (r) of each gravity coefficient is the formal value based on a data weight of 1 cm/s and needs to be calibrated downward. The rms is the root
mean square of the fit to the full data set at 10-s rate; rge is the range of residuals around closest approach for flybys 1 and 2. For HgM001, C2,1 and S2,1 were set to zero and not
estimated, whereas they were estimated for HgM001A.

A priori value A priori r 3 � 3 solution 3 � 3 r HgM001 HgM001A

4 � 4 solution 4 � 4 r 4 � 4 solution 4 � 4 r

GM 22031.81 10,000 22031.79 0.08 22031.80 0.08 22031.80 0.08
C2,0 �0.94 5.0 �0.940 0.9 �0.857 1.8 �0.842 1.8
C2,1 0 5.0 0 0 0 0 �0.194 4.7
C2,2 1.30 5.0 1.195 0.5 1.258 0.7 1.242 0.8
C3,0 0 2.2 0.051 2.2 0.049 2.2 0.052 2.2
C3,1 0 2.2 �0.621 1.2 �0.634 1.4 �0.617 1.4
C3,2 0 2.2 0.289 2.1 0.098 2.2 0.085 2.2
C3,3 0 2.2 �0.424 0.3 �0.403 0.4 �0.394 0.4
C4,0 0 1.1 0.031 1.0 0.029 1.0
C4,1 0 1.1 0.033 1.0 0.031 1.0
C4,2 0 1.1 0.027 1.0 0.020 1.0
C4,3 0 1.1 0.084 1.0 0.085 1.0
C4,4 0 1.1 0.136 0.3 0.134 0.3
S2,1 0 5.0 0 0 �0.176 4.7
S2,2 0 5.0 �0.112 0.6 �0.043 0.9 �0.060 0.9
S3,1 0 2.2 �0.427 1.2 �0.336 1.4 �0.340 1.5
S3,2 0 2.2 0.162 2.1 �0.059 2.2 �0.071 2.2
S3,3 0 2.2 0.012 0.4 �0.019 0.5 �0.021 0.5
S4,1 0 1.1 0.036 1.0 0.037 1.0
S4,2 0 1.1 �0.028 1.0 �0.032 1.0
S4,3 0 1.1 �0.013 1.0 �0.012 1.0
S4,4 0 1.1 �0.046 0.4 �0.044 0.4
rms 0.287 0.284 0.284
rge 1.1; 1.4 0.87; 1.10 0.88; 1.11

Units: GM, rGM are in km3 s�2; all coefficients and standard deviations are �10�5; rms is in mm/s; rge is in cm/s.
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included in any of the other solutions. These two coefficients rep-
resent the orientation of the angle between the polar axis of the
coordinate system and the rotation vector. It was reasonable to as-
sume that our data, which were largely near the equator, would
have little sensitivity to the orientation of Mercury’s spin axis,
and so these quantities were omitted in most of our solutions,
essentially assigning them a value of zero. The inclusion of these
terms in one solution was an attempt to demonstrate our insensi-
tivity to these terms through their estimated standard deviations.

Further, we added a constraint to the solutions because of the
increased number of parameters being estimated. This constraint
consisted of a priori standard deviations for all the coefficients that
followed a Kaula (1966) rule for spherical harmonic degree l of
2 � 10�4/l2. Thus, the a priori standard deviations for all degree-2
terms were 5 � 10�5, for all degree-3 terms were 2.2 � 10�5, and
for all degree-4 terms were 1.1 � 10�5. This constraint ensured
that the estimated coefficients would not deviate markedly from
their a priori values unless the data strongly supported a different
value.

The three spherical harmonic solutions are shown together with
the a priori values and their a priori standard deviations in Table 4.
The solutions all provide essentially the same value for GM and
yield values very close to those shown in Table 4 for the degree-
2 solutions. The a priori standard deviations for all the degree-2
coefficients suggest that they were able to adjust freely, and that
the final formal uncertainty was significantly reduced from its a
priori value with the exception of C2,1 and S2,1, for which the uncer-
tainty hardly changed, as was expected. In contrast, most degree-3
and -4 coefficients have final standard deviations that are almost
the same as the a priori values, suggesting that there is very little
information about these coefficients in the data. The major excep-
tions are the C3,3 and C4,4 terms, which have half wavelengths,
respectively, of 60� and 45� in longitude and latitude.

The best solution overall is 4 � 4 HgM001 because it better rep-
resents the data near closest approach in residual range and root
mean square (rms) residual. Including the (2, 1) coefficients in
HgM001A makes no improvement. The 3 � 3 solution is almost
as good on the basis of the above criteria of rms and range, and
its values for the degree-2 coefficients and GM are the same within
any reasonable error estimate as for HgM001. Estimating addi-
tional coefficients of degrees 5 and 6 produced no measurable
improvement in the solution.

The main surprise from these solutions is the small value of
C2,0, approximately one third of the a priori value from Mariner
10, which is problematic with regard to geophysical interpreta-
tion, as discussed in Section 5.2. The calibration of the standard
deviations for the gravity coefficients is therefore important in
the context of understanding whether the difference in C2,0 be-
tween MESSENGER and Mariner 10 is of significance. First, we
attempted to estimate the influence of the length of the data
span on the results by redoing the HgM001 solution using smal-
ler data sets of 6, 8, 10, 12, and 14 days. In these solutions all a
priori values were identical. We used the same constraint model
as HgM001, and the initial gravity field and GM were from the
Mariner 10 solution. The 14-day arc is different from HgM001,
which is also 14 days, because the a priori value in HgM001
was an earlier 2 � 2 solution (Table 3). Each solution was iter-
ated once. We also constructed two additional solutions with
fixed values of C2,0 to see if a different value for C2,0 could lead
to an equally acceptable solution for the other degree-2 coeffi-
cients, C2,2 and S2,2, with the latter expected to be identically
zero. These solutions were also 4 � 4 and constrained in the
same way as HgM001.

These solutions for different data set lengths and with fixed C2,0

values are shown in Fig. 7. The solutions with fixed C2,0 (J2 = 6, 5,
and 4 � 10�5) are shown on the left side of the chart. The rms fit
to the entire data set was not substantially changed, but the value
of S2,2, which is expected to be zero, is very large. The values of C2,2

are acceptable and are reasonably stable. If these results are
extrapolated they almost intersect with the HgM001 values, shown



Fig. 7. Results for C2,0, C2,2 and S2,2 from a series of 4 � 4 gravity field solutions for
fixed values of C2,0 and for data sets varying in length from 6 days to 14 days. The
extrapolation of the solutions with fixed J2 leads to the HgM001 values indicating
linearity in the solution adjustment. The solutions for various data lengths are all
grouped together, and all started from the M10 values for gravity with consistent a
priori values for the other parameters.
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on the figure. Thus, if we were to accept a larger value of C2,0 than
the MESSENGER data indicate, a larger S2,2 value is needed.

The result of changing the arc length of the data set is also
shown in Fig. 7. The five values are grouped in a relatively small
area, suggesting that the data span is not the cause of the low value
of C2,0. The change in S2,2 is greater than that of C2,2, suggesting that
the latter is relatively well determined and we can use the spread
of values as a way of estimating the scaling factor and true stan-
dard deviation of the HgM001 coefficients. From the variation in
the length of data set we obtain standard deviations of
0.28 � 10�5 for the mean for C2,0, 0.063 � 10�5 for C2,2, and
0.12 � 10�5 for S2,2, which are 1/6, 1/11, and 1/7 of the formal stan-
dard deviations.

Another way of estimating the real errors is by looking at the
sizes of the estimated coefficients that are expected to be zero:
S2,2, C2,1, and S2,1. If we wish a standard deviation to be three times
the estimated coefficient value, then the standard deviation of S2,2
Fig. 8. Correlation matrix for the HgM001 solution. The correlations between GM and al
and S4,2. All correlations >0.5 have colored backgrounds.
in HgM001A in Table 4 would be 0.18 � 10�5, or 1/5 of the formal
value in the table. For C2,1 and S2,1, the ratios (3 � coefficient mag-
nitude)/(formal standard deviation) are both 1/8. From these re-
sults, we assume that a representative scale factor for the formal
standard deviations is 1/6. Applying this factor to the HgM001
solution, we obtain for the main (normalized) coefficients
C2;0 ¼ ð�0:86� 0:30Þ � 10�5; equivalent to

J2 ¼ ð1:92� 0:67Þ � 10�5;

C2;2 ¼ ð1:26� 0:12Þ � 10�5; equivalent to an unnormalized

C2;2 ¼ ð0:81� 0:08Þ � 10�5;

S2;2 ¼ ð�0:04� 0:15Þ � 10�5:

ð2Þ

The above standard deviations do not explain the difference in
C2,0 from the M10 estimate, even if we consider them to be 1-r val-
ues. The scaling of the formal error estimate for GM is probably 1/2,
even though it was one of the most stable parameters throughout
the analysis. Thus our estimate for GM is
GM ¼ 22031:80� 0:04 km3 s�2: ð3Þ

The possibility of a systematic error in the solution cannot be ig-
nored and is one of the reasons that we studied the separability of
GM and C2,0 (see Fig. 7).

The correlations for the HgM001 solution, which are generally
small except for certain coefficient pairs, notably C2,0 with C4,0

and S2,2, C2,2 with C4,2, and S2,2 with S4,2, and several degree-3 coef-
ficients, are shown in Fig. 8. However, at least one coefficient in any
pair is usually small, suggesting that the effect of the correlation is
probably not important. The tradeoff between C2,0 and S2,2 is quan-
tified in Fig. 7.

Another consideration in the reliability of the results is the de-
gree of convergence of the solution. In Table 4 the solutions were
iterated at least twice by changing the a priori gravity field and
re-estimating all the parameters. In Fig. 7, all solutions started
from the Mariner 10 values and were iterated once after conver-
gence of the trajectory parameters. The difference between the
iterated HgM001 solution shown in the chart and the extrapolated
solutions with fixed J2 or varying arc lengths (only one solution had
the same data span as HgM001) after one iteration is relatively
small and does not change the general result. The subject of con-
vergence is raised only because the flyby trajectories are not closed
orbits about Mercury (as they will be after orbit insertion in 2011)
l gravity coefficients are small; the correlations with C2,0 are large only for C4,0, S2,2,



Fig. 9. Doppler residuals from the HgM001 gravity model near closest approach.
Although the signatures are similar for the two flybys, the ground tracks are nearly
180� apart in longitude. For flyby 1 the residuals are mostly the along-track velocity
component, and for flyby 2 they are nearly radial to the orbit. The data are at 10-s
rate, and the Doppler noise is �0.1 mm/s.
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and thus are potentially vulnerable to changes in the trajectory
from iteration to iteration.

The final consideration in understanding our solutions is that
the HgM001 solution does not fully satisfy the Doppler tracking
data (Table 4). Thus some gravity signal remains in the data that
we have not recovered. The Doppler residuals for the flybys are
shown in Fig. 9 with respect to the time of closest approach. The
residual patterns in Fig. 9 show a small perturbation of the space-
craft velocity over a 20-min period that we have not modeled. The
structure of the residual patterns around closest approach is simi-
lar for the two encounters, but the longitudes of closest approach
to Mercury during flybys 1 and 2 were on opposite sides of the pla-
net. In addition, the residuals (in the direction of Earth) are along-
track on flyby 1 and nearly radial to Mercury on flyby 2.

The displacement of the spacecraft center of mass from its mean
position in the orbit during flyby 2 at closest approach is in the
direction of line-of-sight to Earth, which is largely in the radial
direction from Mercury. The magnitude of the displacement is
approximately ±25 cm and is small compared to the size of the
MESSENGER spacecraft. Conceivably, this displacement could be
the result of incorrect modeling of the spacecraft attitude, position
of the center of mass of the spacecraft, and/or motion of the phase
center of the antenna during the flyby, although we do not think
that any of these are the explanation.

The implied accelerations of the displacement that occur within
a 5-min period are approximately ±4 mGal, and the possibility that
this residual signal could be explained by the presence of one or
more surface mass anomalies near the ground track of the space-
craft is discussed briefly in the next section.

The gravity anomalies for the HgM001 gravity model are shown
in Fig. 10. The top chart shows positive anomalies at 0/360� longi-
tude and at 180�, and negative anomalies near 120�E and 240�E
longitude, revealing the elliptical gravitational shape of the equa-
tor. The center chart shows the anomalies when C2,2 is assumed
zero but all other coefficients are the same, representing the anom-
alous gravity field that is not explainable by the triaxial geoidal
shape of the body. Note that a large positive gravity anomaly is
seen at about 70�E and a negative anomaly at about 230�E. Further,
there is some suggestion of positive gravity at 0�E and 180�E even
after removal of the C2,2 term.

The lower chart in Fig. 10 shows the predicted errors in the
anomalies for a scaling of the formal errors by 1/6 and the correla-
tions shown in Fig. 8. As expected, greater accuracy is seen along
the ground track of both flybys at about 2 mGal. It is important
to remember that the ability to assign anomalies to the north or
south is difficult with near-equatorial data. Thus, the large negative
anomalies at high latitudes and longitudes 30–90�E could be in
both hemispheres as the chart suggests, or in either one.
4.2. Gravity anomaly solutions and large basins

In an effort to fully satisfy the Doppler signal we obtained a ser-
ies of gravity field solutions that included a single adjustable sur-
face mass anomaly as well as 4 � 4 spherical harmonics. In
preliminary analysis we had found that a set of regularly spaced
10� � 10� surface mass anomalies alone was not able to satisfy
the Doppler data as well as a 4 � 4 gravity field. Thus, we used
the HgM001 solution as the a priori gravity field and estimated a
new 4 � 4 gravity field simultaneously with a 10� � 10� degree
surface mass anomaly in a given location. Because of the possibility
that Mercury might have mascons (large positive mass anomalies
associated with impact basins), like the Moon (Muller and Sjogren,
1968) and Mars (Smith et al., 1999), we chose the anomaly loca-
tions to be major basins on Mercury that had been previously iden-
tified from Mariner 10 (Spudis and Guest, 1988) and MESSENGER
images (Watters et al., 2009). In each case the a priori value of
the anomaly was zero, and the a priori standard deviation was
10 mGal.

We estimated a 10� � 10� anomaly in each of 24 of the larger
basins distributed across the planet and used the range of residuals
near closest approach on each flyby as a measure of the importance
of a given location. A new 4 � 4 spherical harmonic solution was
obtained with each gravity anomaly.

In general, the allowance for mass anomalies at all locations
made a small improvement to the magnitude of the residual pat-
tern. The M1 residual spread was reduced from 8.72 mm/s for
HgM001 to about 8.30 mm/s for 22 of the 24 basins, and for M2
was reduced from 11.08 mm/s to about 10.85 mm/s. Because we
obtained similar results for all basins, we believe the reduction
was probably the result of adding an additional variable to the
solution and purely a numerical effect. The values of the anomalies
were generally a few tenths of mGal, and the estimated standard
deviation was only slightly less than the a priori standard
deviation.

One surface mass anomaly made a larger residual reduction,
from 8.72 to 8.02 mm/s on flyby 1 and 11.08 to 9.77 mm/s on flyby
2. This anomaly was located at the Mena-Theophanes basin (cen-
tered at 1�S, 231�E). This basin (Spudis and Guest, 1988; Table II)
was partly mapped by Schaber et al. (1977) and analyzed in greater
detail by Spudis and Strobell (1984). Analysis of Earth-based radar
altimetry by Harmon et al. (1986) showed that, although evidence
of a topographic rim could be found along several parts of the ba-
sin’s circumference, the interior is not markedly lower than the
surrounding terrain. Harmon et al. (1986) concluded that although
the radar data did not offer unambiguous support that this feature
is a multi-ringed basin, if it is of impact origin the topography sug-
gests that the basin interior was highly modified, perhaps by volca-
nic fill. The magnitude of the surface mass anomaly at Mena-
Theophanes in our solution was �0.9 ± 0.5 mGal, after scaling
(i.e., a mass deficiency). This basin is located in a region of negative
gravity anomaly in Fig. 10 and along the M2 ground track, account-
ing for the greater reduction in residuals for flyby 2 than for flyby 1.
The revised gravity anomaly map is shown in Fig. 11 and should be
compared with the top chart in Fig. 10; note that the figure scales
are slightly different. The results are consistent with a mass anom-
aly in this region that contains non-negligible contributions at
wavelengths shorter than degree 4.

One result of solving for the surface mass anomaly was to in-
crease the global anomaly range to 40 mGal from 35 mGal for
HgM001, although the value at the Mena-Theophanes location
was almost unchanged at approximately �12 ± 2 mGal. We com-
pared the magnitude range of anomalies for HgM001 (±18 mGal)
with a 4 � 4 gravity model of the lunar nearside where there are
several mascons, although they are not resolvable in a 4 � 4 lunar
gravity model.



Fig. 10. HgM001 gravity anomaly and error maps in Mollweide projection centered on longitude 180�E. Top: gravity anomalies. Middle: gravity anomalies with C2,2 = 0.
Bottom: estimated errors based on a scaling of 1/6 of the formal errors. Top chart shows the triaxial gravitational shape of Mercury; middle chart shows anomalous gravity
when the gravitational equatorial ellipticity is set to zero; bottom chart shows the estimated errors in both the above fields. Note that the scale for the bottom chart is
different from those for the top and middle charts.
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The lunar nearside gravity, at 4 � 4 resolution, has an anomaly
range of �15 to +30 mGal, which is a �25% larger range than we
see on Mercury. We compared only the front side of the Moon with
HgM001 because South Pole-Aitken and the adjacent highlands
dominate the Moon’s farside gravity field even at these wave-
lengths and display an anomaly range of over 100 mGal. The inabil-
ity to recover anomalies at the selected impact basins does not
therefore imply that Mercury does not possess large mass concen-
trations. We consider the question open and unanswerable with
the flyby data alone.

Although the estimation of the surface mass anomaly made a
relatively large reduction (�10%) in the residual patterns, the
new 4 � 4 gravity model had a numerically smaller value of C2,0

and a larger S2,2, making the solution less physically acceptable.
It appears that estimating a gravity anomaly close to the equator
has the consequence of reducing the gravitational flattening and
changing the equatorial ellipticity. However, there was no major
change in the value of C2,2. Of probably greater importance is the
change in the anomaly map of HgM001 (Fig. 10, top, to Fig. 11)
as a result of adding a single anomaly to the solution. This change
reflects the remaining Doppler residuals and the overall sensitivity
of the solution from the data on these two flybys. Thus we did not
pursue adjusting any additional anomalies and consider the
HgM001 model as the preferred model overall.



Fig. 11. Gravity anomalies for a 4 � 4 spherical harmonic model plus a single gravity anomaly at �1�S, 231�E, in the region of the Mena-Theophanes impact basin. This figure
should be compared with the top chart in Fig. 10. Note the different scales on the two maps.
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A second basin, Tolstoj (16.4�S, 195.2�E), also produced a
slightly greater reduction in residual spread than the majority, to
8.24 and 10.51 mm/s for flybys 1 and 2, respectively, with a mag-
nitude of +1.4 ± 1.5 mGal after scaling. The Tolstoj basin is in an
area of positive gravity anomaly in Fig. 10. Tolstoj is also closer
to the ground track of M2 than that of M1, but it is still more than
400 km south of the flyby 2 ground track.

Finally, it is recognized that the altitude of the spacecraft limits
the resolution of the gravity field that can be resolved on the sur-
face. Generally, horizontal resolution is usually limited to about
half the altitude. At closest approach, MESSENGER was 200 km
above the surface, so the resolution would be about 100 km, or
about 2.5�, at this location. For an anomaly located 30� of arc from
the track, the range from 200 km altitude would be about 1300 km
and the resolution 650 km or 16�. At 1000-km altitude and at a
horizontal offset of 45� of arc, the resolution is 30�, corresponding
to spherical harmonic degree and order 6.

So MESSENGER is probably sensitive to anomalies of degree and
order 6 and higher (equivalent to over 100 gravity coefficients)
during the flyby, but our data set is able to support only a fraction
of this number in an inversion solution. HgM001 has 19 coeffi-
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cients, even when we apply a constraint. Thus MESSENGER is sen-
sitive to more gravity parameters than the flyby data are able to
resolve.
5. Implications for internal structure

5.1. Constraints on crustal structure from equatorial altimetry and
gravity

If the mean crustal thickness is small relative to the planetary
radius, then from the geometric description of equatorial shape
presented in Section 4, the difference in crustal thickness between
the first and third quadrant is approximately (Kaula et al., 1972)
2F1ðDq=�qÞ. Here Dq is the density contrast between the crust
and the average density of the remainder of the planet, and �q is
the planetary mean density. With the approximation Dq=�q � 0:5,
the difference in crustal thickness is only about 3 km. This result
suggests that a simple crustal thickness difference does not explain
the gravity and shape, and additional investigation into implica-
tions for internal structure is warranted.

In Section 4 we presented results indicating that the estimated
gravity coefficient S2,2 is essentially zero in our preferred gravity
model, HgM001, indicating that Mercury’s coordinate system is
aligned along its principal inertia axes. This is precisely what is ex-
pected because of the planet’s 3:2 spin orbit resonance, which ori-
ents the minimum moment of inertia axis towards the Sun at
perihelion (Colombo, 1965; Goldreich and Peale, 1966), and be-
cause 0� and 180� longitudes correspond to noon at perihelion
(the so-called ‘‘hot poles”). The fact that the orientation of the long
axis of the shape ellipse, u2, is close to 0� suggests that the equato-
rial gravitational moments have a causative relationship to the
equatorial shape. Specifically, C2,2 and the equatorial moment dif-
ference (B � A) must be strongly controlled by the elliptical (de-
gree-2) shape plus any interior density boundaries that are
correlated with this shape. Examples could be the crust/mantle
and core/mantle boundaries, and/or degree-2 density variations
within the mantle (e.g., from convection or melt depletion). An
interesting question is the historical relationship between the
equatorial degree-2 shape and orientation of the planet, and
whether there has been ‘‘equatorial wander” in the 3:2 resonance
state. We first evaluate whether the equatorial shape alone can
properly account for the equatorial moments using the relation-
ship (Zuber et al., 2008):
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ðB� AÞ ¼ 2
5

qc

�q
MRða� bÞ; ð4Þ

where R, M, and qc are Mercury’s mean radius, mass, and crustal
density, respectively. With the combined MLA-radar (a � b) value
of 1555 ± 341 m and qc = 3000 kg m�3, the (B � A) prediction is
(2.770 ± 0.607) � 1032 kg m2. The estimated (B � A) moment differ-
ence is obtained from the estimated C2,2 = (0.81 ± 0.08) � 10�5,
using C2,2 = (B � A)/4MR2, and is (0.640 ± 0.061) � 1032 kg m2. Obvi-
ously, this discrepancy requires substantial compensation of the de-
gree-2 equatorial shape. Although the planetary density
distribution that gives rise to the equatorial moments cannot be
determined uniquely, it is reasonable to explore a model composed
of the surface topography and a partially to fully compensated
crust–mantle boundary (e.g., Anderson et al., 1996). Here the rela-
tionship between the predicted gravity coefficient, pC2,2, and the
shape coefficients, c2,2 and s2,2, is:

pC2;2 ¼
3
5

qc

�q
1
R
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� �4
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q
; ð5Þ

where Rc is R minus the mean thickness of the crust, hc. Here C2 is
the ‘‘degree of compensation” (and the term in brackets is the ‘‘iso-
static response function”) for spherical harmonic degree l = 2. Given
the estimated gravity and topography coefficients, specification of
qc and C2 provides an estimate of the crustal thickness hc. Setting
C2 to 1 corresponds to perfect isostatic compensation by mass bal-
ance. Anderson et al. (1996) used this approach for Mercury and ob-
tained hc = 203 ± 101 km for qc = 3000 kg m�3, which with our
gravity and topography coefficients yields hc = 156 ± 23 km. This
new result is within the uncertainty in the Anderson et al. (1996)
estimate but carries an error four times smaller.

However, simple mass balance is not a good approximation for
compensation of the shape because membrane stresses can pro-
vide an important support of topography at degree 2 (Turcotte
et al., 1981). The l-dependent degree of compensation for flexural
and membrane support is a function of qc and the mantle density,
qm; Young’s modulus, E, and Poisson’s ratio, v; and the effective
elastic thickness of the lithosphere, Te. Adopting a parameter set
qc = 3000 kg m�3, qm = 3500 kg m�3, E = 50 GPa, v = 0.25, and
Te = 60 km yields C2 = 0.747, indicating that a less than equivalent
interior mass (opposite in sign) in conjunction with membrane
stresses would support the surface mass associated with the de-
gree-2 shape. As Te approaches 0, C2 converges to 1, the mass bal-
ance solution; as Te increases, pC2,2 increases to the point where it
lies above the estimated range of C2,2 for a given hc. This relation
provides an upper bound on Te at the limit of zero crustal thickness,
as illustrated in Fig. 12, which shows predictions for Te = 0 km and
60 km.

Given that the gravity constraint, C2,2, produces a spectrum of
solutions for hc as a function of Te, refinement of crustal thickness
knowledge can be achieved with independent information on this
elastic parameter. Nimmo and Watters (2004) estimated that at
the time of fault slip on one lobate scarp on Mercury, Te was 25–
30 km. This local result was based on a depth of faulting on the
thrust fault thought to underlie the lobate scarp of 30–40 km (Wat-
ters et al., 2002; Zuber et al., 2010). The depth of faulting was equa-
ted to the depth of the brittle–ductile transition, and this depth
was converted to Te by the usual moment–curvature procedure
(McNutt, 1984). Fig. 13 shows the hc solution space for a wide
range of E and qc values and adopts the Te estimate, 25 km, and
the assumed mantle density, 3300 kg m�3, of Nimmo and Watters
(2004). Adopting their values of E and qc for self-consistency yields
hc = 30 km. In general, the solutions would seem to cover broad
parameter ranges, but additional considerations can limit the pos-
sibilities. The bulk of Mercury’s crust likely formed through re-
peated volcanic activity, and there is essentially no evidence for
an early feldspar-rich flotation crust similar to the lunar highlands
(Denevi et al., 2009). This finding indicates that the upper range of
crustal densities in Fig. 13 is more likely, though stronger con-
straints on crustal density should be forthcoming from the MES-
SENGER mission orbital phase. For values of E greater than
50 GPa, this mild density constraint limits the solution space for
hc to not much greater than �100 km. Independently, a require-
ment that the crustal base temperature not exceed the solidus
temperature limits crustal thickness to �80–100 km for a solidus
temperature range of 1400–1600 K (Nimmo and Watters, 2004).
Thus thermal, tectonic, and MESSENGER shape/gravity analyses
tell a consistent story of a crust likely no more than 100 km thick.

5.2. Implications of gravity for core state

Mercury is in Cassini state 1, where the spin axis, the orbit nor-
mal, and the normal to the Laplace plane remain coplanar as the
first two vectors precess around the latter at a current instanta-
neous rate corresponding to a period of 328,000 years (Peale,
1976; Peale et al., 2002; Margot et al., 2007). Occupancy of the Cas-
sini state leads to the expression,

C

MR2 ¼
J2

ð1�e2Þ3=2 þ 2C2;2
7
2 e� 123

16 e3 þ Oðe5Þ
� �h i

g
l

ðsin IÞ=ic � cos I
; ð6Þ

where A < B < C are the principal moments of inertia, with C being
the moment of inertia about the spin axis; ic is the obliquity of Cas-
sini state 1 (and is equal to Mercury’s obliquity); e is the eccentricity
of Mercury’s orbit; I is the inclination of Mercury’s orbit plane to the
Laplace plane on which Mercury’s orbit precesses with approxi-
mately constant inclination; n is the orbital mean motion, and l
is the frequency of the orbit precession.

Mercury’s obliquity, ic = 2.11 ± 0.1 arcmin (Margot et al., 2007),
is known much more precisely than either J2 or C2,2, which allows
us to write J2 as a function of C2,2 for particular values of C/MR2

from Eq. (6). This exercise has been carried out in Fig. 14 for the
likely extreme values of C/MR2 (Harder and Schubert, 2001; Hauck



Fig. 14. Observational constraints on J2 and C2,2. Values admitted by the obliquity
measurement and the occupancy of the Cassini state are computed for two extreme
values of C/MR2 according to Eq. (6) and shown by the color bands. The vertical
spread of the color bands corresponds to the 1-r uncertainty in the measured
obliquity. The spread in the values admitted from analysis of radio science data
from three Mariner 10 flybys and two MESSENGER flybys are shown by boxes
corresponding to 1-r and 3-r, respectively. The current estimate of J2 from
MESSENGER data appears to be overly small (see text).

Fig. 15. Distribution of Cm/C implied by the normal distributions in (B � A)/
Cm = (2.03 ± 0.12) � 10�4 and (B � A)/MR2 = (3.24 ± 0.32) � 10�5 and two extreme
values of C/MR2, 0.31 and 0.38. The distributions are based on Eq. (7).
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et al., 2007). (Note that C/MR2 increases with the sulfur content of
the core; the lower bound corresponding to 0% sulfur was used by
both Harder and Schubert and by Hauck et al., and the upper bound
corresponds to 35% sulfur, from Harder and Schubert.) The vertical
range of the bands for each value of C/MR2 corresponds to the 1-r
extremes in ic. Also in Fig. 14 are boxes showing the 3-r extremes
for the two MESSENGER flybys and the 1-r extremes for the Mariner
10 values (Anderson et al., 1987). The HgM001 MESSENGER gravity
model gives the unnormalized coefficients J2 = (1.92 ± 0.65) � 10�5

and C2,2 = (0.81 ± 0.08) � 10�5. Because both flybys were near-
equatorial, the sensitivity to C2,2 is much greater than that for J2

(Section 4.1). If we substitute these values of J2 and C2,2 along with
the value of ic in Eq. (6), the 1-r extremes in these variables lead
to 0.122 < C/MR2 < 0.228. Both of these limits are considerably less
than the smallest plausible values of the moment of inertia obtained
by Harder and Schubert (2001) and Hauck et al. (2007) and shown in
Fig. 14. This result implies that the more uncertain J2 should be
considerably larger than that obtained by the gravity field solution.
A larger value of J2 would raise the MESSENGER 3-r box in Fig. 15
and make it more consistent with both the Mariner 10 value and
the constraints imposed by the obliquity. Unfortunately, as dis-
cussed in Section 4.1, a higher value of J2 provides a considerably
poorer fit to the tracking data than the recovered solution; increas-
ing J2 to desired levels also results in a non-zero S2,2, which is also
quite problematic.

There is no analogous issue with the least-squares solution for
C2,2, which is well determined from the equatorial flyby geometry
(Section 4.1). We can use the smaller uncertainty in this term to re-
fine the constraints on Cm/C, where Cm is the polar moment of
inertia of the mantle and crust alone. Following Peale et al.
(2002) we write

Cm

ðB� AÞ
ðB� AÞ

MR2

MR2

C
¼ Cm

C
; ð7Þ

where (B � A)/Cm = (2.03 ± 0.12) � 10�4 is determined from the
amplitude of the physical libration in longitude (Margot et al.,
2007), and (B � A)MR2 = (3.24 ± 0.32) � 10�5 = 4C2,2. If we assume
that (B � A)/Cm and (B � A)/MR2 are normally distributed with mean
values and standard deviations as indicated, we can construct the
distribution of Cm/C with random insertions into the normal distri-
butions and for fixed extreme values of modeled C/MR2. The distri-
butions for the two extreme values of C/MR2 are shown in Fig. 15.
The mean value of Cm/C is near 0.5 for any value of C/MR2 between
the extremes, and the small r between 0.053 and 0.060 means that
the first two MESSENGER flybys have reinforced the conclusion of
Margot et al. (2007) that Mercury’s mantle is decoupled from a fluid
outer core on the 88-day annual period of the forced libration. The
value of C2,2 would have to be increased by almost 9-r to bring Cm/C
near 1, the value this technique would find were the core solid.
Reducing the uncertainty in Cm/C is one of the most important con-
tributions from the two MESSENGER flybys of Mercury.
6. Summary

Altimetric and radio tracking observations from MESSENGER’s
first two flybys of Mercury have improved knowledge of the pla-
net’s equatorial shape and gravitational signature. During each fly-
by, MLA collected an altimetric pass that spanned about 3200 km
along the planet’s near-equatorial region. The passes were situated
on opposite hemispheres of the planet, and they span collectively
�40% of the planetary circumference. The mean elevation of the
M1 profile, in the longitude range 0–90�E, is greater than the mean
of the M2 profile, in the longitude range 180–270�E, indicating an
equatorial COF-COM offset as observed for other terrestrial planets
(Wieczorek, 2007), with a magnitude in good agreement with anal-
yses of Earth-based radar topography (Anderson et al., 1996). The
MLA profiles both exhibit slopes of �0.015� downward to the east,
which is consistent with a long-wavelength equatorial shape de-
fined by an ellipse.

Doppler tracking of the MESSENGER flybys from the radio-fre-
quency tracking system (Srinivasan et al., 2007) shows great sensi-
tivity to the gravitational structure of Mercury. The equatorial
ellipticity, C2,2, is well determined and correlates with the equato-
rial shape. The S2,2 coefficient is �0, as would be expected if Mer-
cury’s coordinate system is aligned along its principal axes of
inertia. The recovered value of the polar flattening of the gravita-
tional potential, J2, is considerably lower in magnitude than the va-
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lue obtained from Mariner 10 tracking (Anderson et al., 1996), a
problematic result for internal structure models. This parameter
is not as well constrained as the equatorial ellipticity, however, be-
cause the flyby trajectories were nearly in Mercury’s equatorial
plane. The residuals from the Doppler tracking data allow for the
presence of mascons on Mercury, but flyby observations are of
insufficient resolution for confident recovery.

The equatorial shape parameters c2,2 and s2,2 and the gravita-
tional equatorial ellipticity C2,2 collectively provide a constraint
on crustal thickness from the equatorial topography and the extent
of its compensation at a crust–mantle boundary. For various
assumptions of degree of compensation and crustal and mantle
density, the range of allowable crustal thickness in all plausible
scenarios is consistent with the upper limit of about 100 km de-
rived from the inferred depth of thrust faulting beneath a promi-
nent lobate scarp, an assumed flow law for crustal material, and
the condition that the crustal base temperature not exceed the sol-
idus temperature (Nimmo and Watters, 2004).

The improvement in Mercury’s equatorial gravitational elliptic-
ity has allowed a markedly improved estimate of the ratio of the
polar moment of inertia of the mantle and crust to the full polar
moment (Cm/C). This refinement strengthens the conclusion of
Margot et al. (2007) that Mercury presently has a fluid outer core.

Further observations from MESSENGER during the orbital phase
of the mission beginning in March 2011 will improve substantially
the altimetric and gravitational characterization of Mercury. This
characterization will lead to a greatly improved understanding of
the planet’s internal structure and thermal evolution.
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