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Abstract. We study the development of finite amplitude folding of the lithosphere through the 
application of finite element models characterized by both discontinuous (layer over half-space) 
.and continuous (strength envelope) viscosity distributions. Both models include strongly strain 
rate-dependent rheologies that approximate slip on pervasive faults. Folding with layers of 
•form, contrasting viscosities is driven solely by •e magnitudes of discontinuities in 
.viscosity at layer interfaces; however, folds may also develop in a medium with a continuously 
varying viscosity distribution. The net driving force for folding in a region of continuous 
viscosity variation is the same as the driving force across a discontinuity with the same net 
viscosity contrast. Continuous and discontinuous viscosity variations give essentially identical 
fold growth rates if the depth over which the viscosity varies is small compared to the 
wavelength of folding or the depth of the viscosity variation. In the uniform viscosity layer 
model, flexural bending of the layer results in a state of extension on topographic highs and 
compression in topographic lows. In contrast, the strength envelope model is characterized by 
significant penetrative shortening near the surface that results in a state of compression 
everywhere along the fold. This model predicts layer thickening beneath fold troughs, as 
observed in the intmpla• deformation zone in the central Indian Ocean. Buo•cy forces retard 
the rate of fold amplification but are inadequa• to prevent folding for a range of realistic 
lithospheric theological structures. 

Introduction 

The characteristic wavelength of folding in a medium that is 
theologically layered perpendicular to the direction of 
shortening has long been recognized to be a sensitive function 
of thicknesses and viscosities (or strengths) of the layers 
[Biot, !957]. Folding models that relate the dominant 
wavelength of folding to layer thickness and viscosity 
contrasts have been extensively applied to determine the 
relative viscosities of discretely layered strata on the 
geological outcrop scale [e.g., Johnson, 1970; Fletcher, 
1974, 1977]. More recently, the observed wavelengths of 
much larger scale folds (-101-102 km) have been used to infer 
the vertical theological structure of the mechanical 
lithosphere. Lithospheric-scale folds have been identified on 
the continents [Biot, 1961], in ocean basins [Weissel et al., 
1980], and on planetary surfaces such as Venus [Catr•bell et 
at., 1983]. Models that address the nature of lithospheric- 
•:ale folding include analytical solutions for flexure of thin 
elastic [Turcotte and Schubert, 1982; Karner and Watts, 1983; 
Karner and Weissel, 1990a, b], viscoelastic [Lambeck, 1983] 
o• elastic-plastic [McAdoo and Sandwell, 1985] plates; 
!'m•arized analytical and numerical solutions of the Navier- 
Stokes equations for viscous flow for media with a single 
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theologically strong layer [Zuber, 1987a; Martinrod and Davy, 
1992]; and numerical small-amplitude solutions for media that 
contain multiple strong lithospheric layers [Ricard and 
Froidevaux, 1986; Zuber, 1987b; Zuber ar, d Aist, 1991]. 

A number of notable simplifications characterize previous 
lithospheric-scale folding models. First, as illustrated 
schematically in Figure 1, most models assumed viscosity or 
strength distributions that are discontinuous with depth, unlike 
the distribution of strength in the lithosphere as supported by 
rock mechanics experiments [Byer!ee, 1968; Brace and 
Kohlstedt, 1980; Kirby and Kronenberg, 1987]. For example, 
Figure !a represents the structure assumed in most flexural 
folding models, a strong, uniform rigidity layer that overlies a 
weak or inviscid substrate. For the structure in Figure l a the 
primary driving force for fold development arises from the 
contrast in Young's modulus (for elastic models), viscosity (for 
viscous models), or yield stress (for plastic models) between 
the strong surface layer and the much weaker substrate. Since 
the lithosphere probably does not contain discrete layers of 
contrasting uniform strength, this model overestimates the 
tendency for folding instabilities to grow. 

An alternative approach (Figure lb) is to consider 
deformation of a continuously stratified mediwn in which 
strength is tmiform near the suffac• and decreases a• a simple 
exponential function of depth to approximate the temperature 
dependence of ductile strength in the lithosphere. In this eau 
the strength profile is everywhere confintmus, and the 
tendency for fold growth is driven by the viscosity gradient. 
However, additional driving tem• that arise from folding of 
initially horizontal surfaces of constant viscosity have not 
be• included in previous analytical models of this s•mre 
[Blot, 1'960; Zuber, 1987a], and the models ther•for• 
underestimate the tendency for folds to grow. Nei'th• models 
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Figure 1. Schematic theological representations of viscosity •)or strength ('r= 2/•xx) versus depth (z) 
for a model lithosphere in a state of horizontal compression. (a) Structure corresponds to a high strength layer 
that overlies a lower strength layer. (b) Structure is characterized by a high strength layer that overlies a layer 
with exponentially decreasing strength. (c) Smacture corresponds to vertical strength profile in the 
lithosphere based on laboratory experiments of brittle (straight line) and ductile (curved line) deformation. In 
models in Figures lb and lc, strength is everywhere continuous within the lithosphere. 

with discrete layers nor exponental viscosity variation closely 
approximate the distribution of strength of the lithosphere 
(Figure l c) and both are valid only for infinitesimal fold 
amplitudes. Thus these formulations cannot be applied in 
areas that have undergone large strains that are characteristic 
of some fold belts [cf. Plan et al., 1983]. 

In this study we develop a more realistic quantitative 
representation of lithospheric-scale folding, by constructing 
finite element models of a lithosphere undergoing uniform 
horizontal shortening. These models incorporate general 
viscosity structures, treat both Newtoninn and non-Newtonian 
flow, and are valid at Ëmite strains. To provide a physical 
foundation for our analysis, we first compare finite element 
solutions for Newtoninn viscous folding at small strains with 
previously published linearized infinitesimal amplitude 
solutions for the same theological structures. We then 
examine the effect on the style of folding of a non-Newtonian 
viscosity distribution that more realistically represents the 
rheo!ogy of the lithophere and address how well the simplified 
structures assumed in previous studies approximate folding of 
the lithosphere. Finally, using the intraplate deformation 
zone in the central Indian Ocean as an example, we address the 
conditions under which observed surface topography and 
surface strain can provide insight into the subsurface structure 
of large-scale folds. 

Formulation 

Finite Element Solutions for Finite Amplitude 
Folding 

To calculate the deformation pattern in a horizontally 
shortening medium with an arbitrary, continuous viscosity 
stratification, we employ a finite element approach based on a 
penalty function formulation for viscous, incompressible 
flow. In this approach, the pressure term from the equilibrium 
equations is eliminated using the expression 

u•,j = -'t:' / z (• ) 

where .g is the penalty parameter that corresponds to a bulk 
viscosity of the material and u i are the velocities. For large 

values of Z, the incompressibility condition ui. i =0 in the 
finite element solution is approximately satisfied'[e.g., Bathe, 
1982]. 

The effect of non-Newtonian rheology was included by 
implementing a simple incremental procedure [e.g., Desai and 
Abel, 1972] to calculate the viscosity at each time step or 
deformation increment. The model assumed a strain ra•. 
dependent viscosity of the form 

1 

(2) 

where go is the reference (initial) viscosity, •2 is the seeo• 
invariant of the strain rate tensor, and n is the power hw 
exponent of stress in the stress-strain rate relationship. To 
simulate the rheology of the lithosphere in the ductile creep 
regime, we used a power law exponent of--3, while in the 
brittle. regime we invoked the assumption of perfect plasticity 
in which n .->oo to approximate a material that deforms by 
pervasive faulting. 

We used two approaches to calculate non-Newton• 
deformation. In the first the viscosity was determ•ed by 
stepping forward one-half time step, reforming the global 
stiffness matrix, calculating the viscosity field at the half time 
step and solving for the velocity field, then using the 
velocities at the half time step to advance the positions of the 
node points over the full time step. in the second approach • 
stepped forward one full time step and used the average straia 
rates from the current and previous time steps in reforming the 
global stiffness matrix and recalculating the velocity field. 
Then the solution for the velocity field was iterated until a 
convergence criterion was satisfied. In both approaches, the 
perturbed (non-Newtonian) viscosities were used at the next 
time step. We investigated models for various mesh 
resolutions, progressively increasing the number of elements 
in the mesh until the solutions no longer changed. 

Boundary Conditions 

The grid geometry and boundary conditions for the finite 
element model are shown schematically in Figure 2. The left 
boundary represents a symmetry plane on which the horizontal 
velocity u and shear stress 't: vanish. The top boundary i• 
stress free, and on the bottom boundary, 'r and the v:erfieal 
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Figure 2. (a) Schematic of the finite element problem illustrating boundary conditions and normalization of 
the mean horizontal strain rate e=. (b) Viscosity structure described by equation (6). (c) Viscosity struc•e 
for a strength envelope distribution of viscosity described by equation (7). 

velocity w vanish. On the right bounda•, z vanishes and u is 

assigned a constant value. The horizontal and vertical •d e dimensions were chosen to be X/2 and 1, respectively. 
dimension •, corresponded to the wavelength of the initial 
peratrbation introduced. The values of the imposed horizontal 
velocity u were selected to yield a normalized horizontal strain 
rge œ= with a value of -1. This normalization permits 
growth rates determined from the Ëmite element analysis to be 
'dm•cfiy compared to those from previous infinitesimal 

amplitude solutions [e.g., Fletcher, 1974, 1977; Zuber, 1986]. 
In the finite element models the growth rate q was determined 
from the slope of the relationship between the natural log of 
the root-mean-square (rms) amplitude of deformation and the 
mean horizontal strain e=t (see equation (4)). 

Llaearlzed Flntte Amplitude Solutions 

Determination of the dominant wavelength in a 
..horizontally shortening, theologically stratified medium 
re.tails solving the Navier-Stokes equations for plane, quasi. 
stsc flow. Analytical or nearly analytical solutions of these 
•uations that are valid to first order in the perturbing flow 
Mve been obtained for media consisting of a layer of uniform 
strength that overlies a layer or halfspace in which strength is 
either uniform or decreases exponentially with depth (Figure 
la and lb). Such solutions describe the initial stages of 
deformation, when the length scale of folding is presumably 
•tablished [Biot, 1961]. The dominant wavelength, which is 
e•trolled by the thicknesses of the strong layers and other 
mechanical properties of the medium, corresponds to the wave 
number k d or wavelength •=-2•/kd at which the dimension- 
l•s growth rate q of the folding instability is maximized. For 
unif ,orm horizontal compression, the growth rate is related to 
'the amplitude of vertical displacement of a random initial 
perturbation, Ai(k,t), at the ith interface at time t by the 
expression 

A i = Ai(,k,o)ex•(l + q)gzzt-1] (3) 

wbm• Ai(k,0) is the •p!itude of the initial perturbation and 
*= is the mean horizontal strain rate. Folding with a 
•inant wavelength develops when the magnitude of the 
"m/fia! penur•tion amplifies with time, which occurs when the 
, '•t of the exponential ttm• in (3) is greater than unity. 

The growth rate can be expressed by rearranging (3) to give 

ln[A/Ao] (4) 

This parameter, which is nondimensionalized by t;=, provides 
a quantitative measure of the degree to which a medimn is 
unstable with respect to folding, with fold development 
dynamically possible for q>!. The dominant wavelength Xd 
corresponds to the wavelength at which q attains a maxirnum 
value for a given set of parameters that describe the thickness 
and viscosity structure of the medium. 

Determination of the Dominant Wavelength 

From linearized, infinitesimal amplitude solutions for 
simple lithosphere structures like Figures l a and lb, 3. d can be 
calculated directly by analytical methods. However, the 
wavelength of folding in more complex rheologica! models 
like Figure l c must be determined numerically. Because in 
finite element models, grid dimensions often influence the 
wavelength that develops, we imposed the wavelength as an 
initial condition. In f'mite element models with viscosity 
distributions for which analytical solutions are available, the 
dominant wavelength from the analytical solution was 
imposed and the growth rate was calculated. The growth rates 
from the analytical and finite element solutions were then 
compared. For more complex viscosity structures, it was 
necessary to make an initial estimate of •d, calculate the 
growth rate, then vary •d until •e value that amplified fastest 
was found. We imposed the initial wavelength in two ways. 
First, as illustrated in Figure 2, we defined the horizontal 
dimension of the grid to correspond to a half wavelength of 
deformstion. Second, we defined an initial lay• thickness 
perturbation d with a harmonic form 

LJtI2j L 2 j 

where Zo represents the interface depth at which the 
perturbation Was imposed, I, is the wavelength, and A o is a 
small (<<layer thick,mss) initial perturbation .amplitude. 



5492 

7O 

q 

60 - 

50 - 

40 - 

3O 

2O 

10 

0- 
1 

ZUBER AND PARMEN'IIER: FINYFE AMPLITUDE FO••G 

I ........ I ...... I' I"1" I'1 II '" I I I I' I' I I II 

•1'i"•L2 + •1'•2 ••( d• • -" 2 2 - tanh z-Zint)/ 
[] LINEARiZED LAYER SOLUTION 

FINITE ELEMENT SOLUTIONS 
ß d - 0.01 
,d -0.1 
,,d = 0.2 

!,.L2 ½ •.• 

Z int 

z 

o 

t 
,I,, ! I I I I III .......... ! I , I ..... I I ! Ill 

,,, i 

! I I II- 
I 

[] _. 

I I I I I ! II 
,,, 

5 10 50 100 500 1000 

Figure 3. Comparison of linearized infinitesimal amplitude solution for high viscosity/low viscosity lay. er 
case and finite element solutions for the viscosity structures shown in the inset. For small d the viscomty 
structure in the f'mite element model approximates that of a high, uniform viscosity layer that overlies a low, 
uniform viscosity layer. For large d, the viscosity distribution displays a gradual gradation from high 
viscosity at the top to low viscosity at the bottom of the medium. The linearized solution agrees with the 
finite element solution in the limit of small d (-0.01). Note that for the range of cases examined the growth 
rates q exceed 1, indicating that the lithosphere is unstable with respect to folding. Parameters assumed in 
both the linearized and finite element solutions are I. tl/l. t2=100, zint=0.8, and nj=n2=l. 

Results 

Uniform Viscosity Layer Models 

In horizontally shortening media consisting of vertically 
stacked uniform viscosity layers, the growth of folding 
instabilities primarily reflects viscosity contrasts at layer 
interfaces. We wish to quantitatively assess the extent to 
which the driving force associated with a vertical discontinuity 
in viscosity within a layered medium is requked for fold 
growth. To address this question, we investigated simple 
folding models for a NewtonJan viscous lithosphere that 
consists of a high viscosity layer over a lower viscosity layer 
(Figure l a). First, in order to test the accuracy of the finite 
element model, we compared growth rates calculated for a 
linearized infinitesimal amplitude analytical solution for this 
theological structure to those determined for a numerical model 
with the same structure. We then analyzed the importance of 
viscosity discontinuities in driving fold growth by comparing 
these results to finite element solutions for structures with 

continuous viscosity variations. 
To investigate the stability of both continuously and 

discontinuously stratified media, we assumed in the finite 
element models a viscosity distribution of the form (Figure 2b) 

#=/•l +•.2....+ 3q-/•2 tanhEZ'-dZin•.. ] (6) 2 2 

where I. t l and Ix 2 are the viscosities at the top and bottom of 
the medium, z in t is the viscosity transition depth, and 
defines the sharpness of the transition. The inset of Figure 3 
shows plots of (6) for a range of d values. For small d tl• 
viscosity distribution corresponds to that for a medium wi..hh 
two layers of uniform viscosity with a viscosity contrast 

the interface between the layers of IX lllg • LineaO• solutions exist for this structure [Fletcher, 7]. Larger 
corresponds to a medium in which viscosity varies gradually 
with depth. 

The net driving force for folding in a region of continou, 
viscosity variation is the same as that across a discontinui• 
with the same net viscosity contrast. So long as the 
over which the viscosity varies is small compared to 
wavelength of folding or the depth beneath the free surfac• of 
the viscosity variation, continuous and discontinao• 
viscosity variations should give essentially identical fog 
growth rates. Figure 3 shows results for three values of d atoa!l 
with the analytical infinitesimal amplitude so!ufioa 
folding of a medium consisting of a strong uniformly vis 
layer over a weak uniformly viscous layer (d=O), The fiai• 
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Figure 4. Determination of the dominant wavelength from growth rate curves. (a) Strength envelope 
viscosity distribution. (b) Relationships between rms amplitude and mean horizontal strain (•x•t] for model 
in Figure 4a. Solutions are shown for for three different imposed wavelengths •.. The dominant •bavelength, 
•.dlhl=3.8, corresponds to the maximum growth rate of folding q, which is obtained from the slopes of the 
liftes. Note that longer and shorter wavelengths yield smaller growth rates. Parameters in the solution include 
i.tl=100, g2=0, zint=0.8, n1=100, n2=3, and z=0.1. 

element solutions in the limit of small d can be compared to and Kohlstedt, 1980; Kirby and Kroner, berg, 1987] is more 
linearized solutions for layers bonded by discontinuities. complex than the viscosity structures assumed in previous 
Note that the analytical and f'mite element solutions for lithospheric folding models, including those discussed above. 
d----O.01 are in good agreement corresponding to a sharp failoff Experiments indicate that strength in the shallow lithosphere 
in viscosity with depth. The difference between the solutions in compression increases approximately linearly with depth 
at large I.tlll• 2 and small d is a consequence of numerical clue to Re pressure dependence of brittle deformation and 
resolution. changes to a region in which strength decreases exponentially 

Figure 3 shows that previous iinearized analytical solutions with depth due to the temperature depen•e of ductile flow. A 
provide a reasonable approximation for the growth rate of schematic of a simplified "yield strength envelope" for the 
folding for small strains. The amount of strain up to which the lithosphere is shown in Figure l c. TI• next objective of our 
solutions agree is sensitive to details of the theological study is to use the finite element approach to investigate 
s•ruc•, but the analytical and numerical growth rates deformation in a model lithosphere that incorporates this 
generally agree to within approximately 15% up to strains of arguably more realistic strength envelope distriCtion of 
-0.05 or more. viscosity. In these models we incorporate nonlinear aspects of 

Growth rates for d=0.1 and 0.2 in Figure 3 are redu•:ed viscous flow, sirtee n --}** in the brittle regime and n~3 in the 
because the depth scale of the viscosity is comparable to the ductile flow regime. 
layer thickness. However, even for the largest value of d Figs. 2a and 2c illustrate the bound• conditions, grid 
shown (=0.2), which represents a very smoothly varying geometry, and physical parame.•s for the strength envelope 
viscosity distribution, q exceeds unity for all I.tl/I.t2, which model. For this structure the viscosity g takes the form 
'indicates that folding instabilities will amplify in rise •nediu.m. 
Figure 3 quantitatively illustrates that sharp changes an 
viscosity favor the amplification of folding instabilities but that a discontinuity in viscosity is not required for folding. 
Blot [1960] came to a similar conclusion for the specific case 
of a compressing, continuously stratified viscoelastic half 
space in which viscosity decreded exponentially with depth. 
The present study shows that this conclusion holds for more 
general viscosity distributions. 

Our approach for computin. g finite amplitude deformation 
differs from those used in prevmus models of folding of single 
layers. Finite amplitude folding has been examined via 
analytical theory for a uniform strength layer [Chappie, ! 968] 
but did not treat general strength distributions. Past numerical 
studies [Dieterich, 1969; Dieterich and Carter, !969' 
Hud!eston and Stephansson, 1973; Parrish, 1973] did not 
make use of reduced integration on the penalty terms in the 
rmite element formulation that allows accurate numerical 
calculation of the viscous flow field. In the limit of 
'infinitesimal amplitude deformation, none of these studies 
accurately reproduced linearized analytical solutions [Fletcher, 
1974]. 

Strength Envelope Models 
The vertical distribution of strength in the lithosphere as 

em•train• by laboratory experiments [By.erlee, 19"68; B.r• 

in the brittle regime arid 

z- zi• z ;• •i• f7b) = exp 
in the ductile regLme, where g! is the viscosity at the brittle- 
ductile transition and g2 is the viscosity at the surf•e. The 
parameter z is the depth-over which viscosity in the ductile 
regime falls by a factor of l/e, which ap•oximates the 
temperature-dependence of viscosity. 

The boundary conditions and grid geometry, shown in 
Figure 2, are the same as for the simpler Newtonian layer 
models discussed in the previous section. However, for the 
more complex theological smactures investigated in this 
section it was not possible to define the dominant wavelength 
a lpri. ori, using results from linearized infinitesimal amplitude 
solutions. In;.tead, it was necessary to make an initial guess as 
to the dominant wavelength, calculate q, and then oh.arise both 
the horizontal grid length. and velocity of shortening m order 
to i•.dentify wavelengths that may have greater q values. Figure 
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Figure 5. Figure 5b shows relationships between rms amplitude and mean horizontal strain (•x• t) for a 
shortening lithosphere with the viscosity structures in Figure 5a. The growth rates of folding q in Figure 5b 
are obtained from the slopes of the lines at strains <0.1. For a!l values of d, the slopes of the lines decrease at 
larger strains, indicating that q also decreases. For d=0.2, q decreases to the limiting value of 1, indicating 
that the medium no longer deforms by folding but solely by uniform horizontal shortening. Parameter values 
for titis calculation are g1=100, g2=0, Zint=0.8, nl=100, and n2=3. 

4b shows relationships between rrns amplitude and mean 
horizontal strain trot for a shortening lithosphere with the 
viscosity structure m Figure 4a. The initial growth rates of 
folding q are obtained from the slopes of the lines at strains 
<0.1. The solutions are for models assuming three different 
imposed wavelehgths •.. The plot shows that different growth 
rates are obtained for different wavelengths of folding. The 
wavelength corresponding to the maximum value of q is the 
dominant wavelength. Wavelengths that are longer (3.=43.d,r3) 
or shorter (•33.d/4) than the dominant wavelength have 
shallower slopes aYncl correspondingly smaller growth rates. 

Figure 5 shows estimates of q for folding at the dominant 
wavelength for three viscosity distributions with fixed 
thickness and viscosity structure in the brittle layer and 
different values of z of the ductile layer. In each case, q exceeds 
the critical value of one, which indicates that lithospheres 
with all of these viscosity distributions fold (rather than 
shorten uniformly) when horizontally shortened. As for the 
infinitesimal amplitude solutions [Biot, 1960; Zuber, 1987b], 
the rate of fold growth is greater for smaller z. The solutions 
in Figures 4 and 5 demonstrate that a medium with a viscosity 
distribution that approximates the vertical distribution of 
strength in the lithosphere can develop folds when 
horizontally shortened. 

Both Figures 4 and 5 illustrate that with decreasing z, q 
progressively decreases with increasing horizontal strain exit, 
which indicates that folds will grow more slowly w•th 
increasing strain. In fact, for the case ef z=0.2, q decreases to 
the limiting value of 1. This corresponds to purely passive 
amplification in which the folds grow at a rate equal to the rate 
of horizontal shortening. Deformation of the medium in that 
case is accommodated solely by uniform thickening of the 
medium rather than by a combination of thickening and 
folding. 

Topography, Surface Strain, and Crustal 
Thickness 

In outcrop-scale folding models, observations of the 
wavelength and thickness of the folded layer provide 
information on the viscosity contrast between the layer and its 
surrounding matrix [Biot, 1957; Johnson, 1970]. For folding 
on the scale of the lithosphere, however, only the wavelength 

is directly observed; details of the lithosphere strength 
structure are sought from the models. We are thus motivated to 
assess whether other observed aspects of the deformation 
provide additional constraints on the subsurface structure. 

Figure 6a shows the deformation pattern, as derived from 
the velocity field, associated with folding of a model 
lithosphere consisting of a strong, uniform viscosity layer 
that overlies a weaker viscous layer for a mean horizon,ffi 
strain of 0.2. Deformation occurs by flexural folding in which 
the layer bends sinusoidally while retaining constam 
thickness. Figure 6b shows the effect of folding of 
lithosphere with a strength envelope distribution of viscosity 
for the same mean strain. In this case the weak area near 
surface concentrates strain as horizontal shorten'tag 
progresses, particularly in fold troughs. Folds in the streng'• 
envelope model are thus characterized by layer thickening 
beneath topographic lows. While the deformation patterns 
the two models are distinctive, it is not clear whether •e 
models could be distinguished on the basis of their surface 
topographic expressions alone. The presence or absence of 
crustal thickening beneath topographic lows, however, whic• 
could be detected from seismic imaging of the crust, could be 
diagnostic of the theological structure. 

Distributions of surface strain associated with the model 
viscosity distributions for the same conditions as above 
shown in Figure 7. The models show a similar dynamic rmge 
of surface strain, but the distribution of strain along the fold 
differs in the models. In the uniform viscosity layer 
(Figure 7a) flexural bending of the layer results in a state of 
extension in the topographic highs and compression 
topographic lows. In the strength envelope model (Figure 
the low strength near the surface relative to that deeper in .fi• 
brittle layer results in a state of compression everywhere almg 
the fold, with the greatest amount of shortening 
topographic lows. In this model more strain at the surface 
accommodated by penetrative shortening relative to layer 
bending than in the uniform viscosity model. However, 
shown in Figure 6b, the amount of flexural bending 'm t!• 
strength envelope model increases significantly over that 
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Figure 6. (a) Deformation of a model lithosphere consisting of a highly non-Newtonian (brittle) surface 
layer of uniform viscosity (shaded) that overlies a weaker non-Newtonian uniform viscosity la•er. 
Deformation grid is on left and viscosity structure is on right. The surface layer deforms by flexural folding 
characterized by bending with no change in layer thickness. Parameter values assreed include I. tlII. t2=100, 
Zint=0.8, n =100 n =3 S=0, and /;•nt=0.2 (b) Deformation of a model lithosphere with a strength J . ,. 2 , ß 
envelope d]str]bunon of viscosity. this case the brittle surface layer (shaded) defomxs by folding 
characterized by layer thickening beneath topographic lows. Paxmeter values are I. t l=200, 112=1, Zint=0.8, 
nl=100, n2=3, z=O.1, S--q3, and œx•t = o.Z. 

the surface in the stzong brittle/ductile core of the lithosphere. 
These differences persist over a range of model parameters and 
suggest that observed distributions of surface strain may be 
iagnostic of the subsurface strength stratification. 

•,pp!icatlon to Folding in the Central Indian 
Ocean 

Seafloor folding in the central Indian Ocean is a well- 
expressed _and well-studied example of intraplate deformation 
of oceanic lithosphere [Weis.sel et al.. 1980]. Deformation in 

this area is characterized by east-,.•est trending topographic 
undulations with a wavelength of 100-300 km and amplitudes 
of the ordcw of 1-2 km [Weissel et al., 1980; Gelltr t al., 
1983; Neprochnov et al., 1988]. Large-amplitude, E-W 
trending gravity and geoid anomalies also characted e the 
deformation [Weisa•l aru:l ttaxby, 1984; glcAdoo 
Sandwell, 1985]. Understanding of the nature of horizontal 
shortening in this regkm •ould constrain the kinera tics of 
Indo-Australian plate deformation [c.b., Bin. t at., 1985; 
St in t al., 1990; R 3'r aru Chan•, 1991] a• v, ell the 



5496 ZUB• AND PARMENTIER: FINITE AMPLITUDE FOLDING 

a) 

.cj 0.0 

• -0.2 

P'" -0.4 

-0.6 

0,00 

.... • ..... ! i ,, . ß ß 

0.25 0.50 0.75 
x 

1.00 

a) 

< -8 

z•-1o 
-12 

b) 

0.0 .c: 

• -0.2 

• -0.4 

-0.6 

0.00 

-14 

b) -2 

0.25 0.50 0.75 1.00 • 
'"" -10 

Figure 7. Distribution of surface strain associated with 
deformation in Figure 6. -12 

theology of the lithosphere [McAdoo and Sandwell, 1985; 
Zub•r, 1987b; Earner ar• Weisset, 1990a]. 

A finite amplitude flexure model has previously been 
l•a• to the •dian Ocean defon'nation [Karner and Weissel, 

which addressed why the deformation localized where it 
did. This model also constrained the force per unit length 
associated with the deformation. However, that model •-5 
contained thin plate approximations and did not address details 
of the rheological structure and their relationship to the -• .7 
deformation. One of the principal outcomes of the analysis presented in this paper is the prediction, for a lithosphere 
characterized by a strength envelope distribution of viscosity, of thickening of the plastic layer beneath fold trough (Figure 
0c). This is in contrast to previous uniform viscosity layer 
formulations [Zuber, 1987b; Martinrod and Davy, 1992] which -!1 
predict either (constant layer thickness) buckling for a strong -12 
surface layer or layer thickening beneath the ridge for a weak 
sttdace layer. Louden [1995] has calculated crustal structure 
through analysis of seismic refraction and gravity data for a -•4 
typical ridge-trough feature in the Indian Ocean deformation 
zone and has reported the crust to be 0.5-1 km thinner beneath 
the ridge as corn .p• to the trough. He ascribed the variation 
in smacture to either lateral flow of serpentinite in the lower 
crust, or possibly asymmelric folding due to an unspecified 
mechanisrn. We contend that such a mode of deformauon is a 
natural consequence of horizontal shortening of a lithosphere 
with a strength envelope viscosity structure. A more detailed 
seismic and gravity survey would provide the basis for testing 
whether such swacture is observed in other areas of the 
deformation zone. 

Another key question is the nature of strain 
accommodation. Strain estimates for the region have varied 
considerably, with values <1% derived from seismic moment 
tensors [Stein and Okal, !978; Petro• and Wiens, 1989] and 
values up to 10% from plate kinemalac models [W/ens et al., 
1985; DeMets et al., 1988, 1990; Gordon et al., !990]. More 
recently, horizontal strains have been estimated to be of order 
2-5% from single- and multi-channel seismic profiles [Bull and 
Scrutton, 1990, 1992; Chamot-Rooke et al., 1993; Van Orman 
eta!., !995], 

Analyses based on single channel seismic reflection data 
from the deformation zone [Weissel eta!., 1981; Geller et al., 
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Figure 8. Relationhips between rms amplitude and 
horizontal strain •/:x•t} for three values of the initial 
perturbation amplitude (Ao) for three model lithospheres 
continuous viscosity distributions. (a) Solutions are 
Newtonian viscous lithosphere with g1=10, IX9=I, Zint=0.8, 
z=0.01. Note that the lines have differe•tt y axis-interc"• bat 
the same slopes for all œx•t. indicating that the growth ra• 
the instability q is independent of the amplitude of the initial 
perturbation for the full range of strain examined. Ho 
the relationship between rms amplitude and horizontal strain 
ependent on A O over the range of strains. Co) Same as Fi'• 'lLm• 
a except Ix•=1000, g9.=l, Zint=0.8, and z=0.01. 

horizontal strah• >0.1, a •iven amp•uxie implies a .parti• 
strain, independent of A•,. (c)Non-Newtonian lithosphere w':• 
a strength envelope distribution of viscosity assuming 
g2=0, Zint=0.8, z=0.1, n!=100, and n2=3. H• q' is.. 
in•epenc[•t of A O at small strains, bdt the relatio•'bi• 
between rms amphtude and horizontal strain is de ,• 
A o over the range of strains. 
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Figure 9. Relations.hips .between rms amplitude and mean 
horizontal strain •x•t) for three values of the 
buoyancy/strength parameter S (=plghl_/'21•.gxx) where Pl and 
hl are the density and thickness oT the surface rayer. 
Cakulation assumes p,l=l, g2---0, Zint---0.8, z---0.1, nl=100, 
and a2=3. Note that even for Farge $, q> 1, which indicaies that 
the n•edium is unstable with respect to folding. 

1983; Charnot.Ro•,ke eta!., 1993] found strain due tq faulting 
to be of o•er 10 '•; and that due to folding to be 10 'ø or less. 
Strain accommodation by faulting was estimated from 
-observed fault offsets, but strain acconunodation via 
continuum shortening is more challenging to constrain. 
Systemadcally mapping crustal thickness variations in the 
region would be a particularly desirable approach to acquiring 
more confident estimates. Models like those considered in 
• study could relate the amplitude of surface topography to 
the horizontal strain for a given theological structure and thus 
,may contribute to the understanding of strain accommodation 
• the Indian Ocean deformation zone. If one uses as a 
constraint published estimates of total strain in this region, 
.:,then o• models can provide insight into lithosphere theology 
ff the amplitude of folding is independent of the amplitude of 
the initial perturbation. The approach assumes that slip along 
faults occurs along plastic slip lines in brittle regions which 
are at yield and thus pervasively deforming, so it is possible to 
'investigate regional averages but not strain associated with 
'mclividual faults. 

Figure 8 shows calculated fold amplitudes as a function of 
hodzonal strain for three different viscosity models, each 
with a range of initial perturbation amplitudes A o. Figs. 8a 
and 8b are for a lithosphere with uniform viscosiB/Newtonian 
layers such as shown in Figure 2b with I•1/IX2=10 and ! 000, 
respectively. Figure 8c is for a lithosphere with a strength 
eave•pe distribution of viscosity as shown in Figure 2c. For 
gl/IX2=10, the ampirude is a strong function of the initial 
perturbation, with higher topographic amplitudes for larger 
initial perturbation amplitudes over the range of strain. For 
the Mgher viscosity contrast in Figure 8b, the solution shows 
fl•e same behavior at low horizontal strains (0.1). However, at 
larger strains topographic amplitude becomes independent of 
the _amp!imde of the initial perturbation. For these cases, in 
the absence of erosion it would be possible to estimate the 
ht•zonud strain associated with folding from the bathymetric 
,.amplitudes of the folds. As shown in Figure 8c, the 

topographic amplitude for a strength envelope distribution of 
viscosity becomes less sensitive to the initial perturbation 
_amplitude at l'figh strains, but it never becomes independent of 
it. :In this case, there is no unique relationship :between fold 

itude and horizontal shortening that is independent of the 
ysical factors present as fo!di.ng initiated. For the typical 

'amplitude of se•oor topography for oc•ic lithosphere 
• at the appro•ate spreading rate, the average seafloor 
-r0aghness at the wavelength of Indian Ocean folding is in the 
ra•e 50-100 m [Goff, 1991; Hayes aad Ka nt, 1991; 
tl•iverao, !991]. If Indian Ocean seafloor, before folding, 
w•s typical, es'dmates of horizontal strain could be deriv• for 
• corapl•te range of models described in this study. For 

example, for a model lithosphere with a rheological stn•mre 
o(•sedloor with an age corresponding to that in the Indian 

an at the onset of f•lding, a horizontal strain of -6% is implied for Ao/A--10' , which is in agreement with the 
seismic reflection estimates. With knowlege of the crust• 
thickness, regional studies relating strain to rheological 
structure would be possible. 

Buoyancy forces, which would act to resist fold growth, 
have been negiected 'm the above nxxiels. • effect of 

. 

buoyancy can be quantita•vely evalualed by varyre& the dimensionless parameter, •i = plgal l zl•gxt,wlwre pl hl 
are the density and thickness of the surface layer, represents 
the ratio of the buoyancy force due to layer thickness 
variations normalized by the average strength of the surface 
layer. Sinai! S (-0) corresponds to the limit of a strorig layer 
in which buoyancy forces are small in magnitud• and do not 
influence the perturb• velocity field. Large S corresponds to 
the limit of a weak layer in w•ch buoyancy forces 
significantly affect the pattern of flow. Figure 9 shows 
solutions for three $ values and illustrates the effect of 
buoyancy in damping folding instabilities. As buoyancy 
fo•es become increasingly important (larger S), q 
progressively decreases, •cating that folds with smaller 
topographic amplitudes will develop. However, for the 
stmc•es we investigated, btmyancy forces are not large 
enough in rmtgnitude in comparison to lithospheric strength 
to prevent folding. For values of $ on the order of unity, 
required to explain the wav•ength of lithospheric folding in 
the Indian Ocean [Zuber, 1987b], gravity only slightly reduces 
the growth rate. 

Condusi,ons 

To better underst• the mechanics of f'mite amplitude 
lithospheric-scale folding, we used f'mite element solutions to 
study the development of folds in model lithospheres 
characterized by both discontinuous and continuous viscosity 
distributions and with strongly strain rate-dependent 
rheologies that approximate slip on prevasively destributed 
faults. First, we examined the folding of a NewtonJan viscous 
medium that contains discontinuities in viscosity and 
compared the results to existing linearizecl, infinitesimal 
amplitude solutions. Growth rates predicted by the finite 
element solutions for horizontal strains up to 0.05 or more 
agree m within approximately 15% with those •c'• from 
inf'mitesimal amplitude solutions. Our resulm thus 
demonstrate that previous linearized models of folding provide 
a reasonable approximation of the physics of the growth of 
folds for small strains. 

In both infinitesimal amplitude ard finite element models 
of folding with layers of uniform, contrasting viscosities, 
folding is driven solely by the magnitudes of discontinuities 
in viscosity at layer interfaces. However, oar finite element 
solutions show that media with continuo• viscosity 
distributions, including structures that approximate the 
distribution of strength in the lithosphere as indicated by 
laboratory experiments, can also be unst•le with respect to 
folding. The net driving force for fo•ng in a region of 
continous viscosity variation is the same as the driving force 
across a discontinuity with the same net viscosity contrast. 
Continuous and discontinuous viscosity variations give 
essentially identical fold growth rates if the depth over which 
the viscosity varies is small compared to the wavelength of 
folding or the depth beneath the surface of the viscosity 
variation. While a uniform viscosity layer in horizontal 
compression will deform fiexurally (i.e., no change of layer 
thickness) for a strong layer and by. inverse boud'•mage (i.e., 
layer thicknc•ng under topographic highs) for a weak layer, a 
lithosphere with a strength envelope distribufi• of 
litesphere viscosity exhibits excess •ckening of the layer 
beneath the topographic low. This struc•e h• • observed 
in the intraplate deformation zxme in the central Indian Ocean. 

For beth NewtonJan and non-Newtonian models with 
oontinuous viscosity distributions, growth rates of folding are 
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independent of initial conditions for small strains. However, 
the relationship between topographic amplitude and 
horizontal strain is sensitive to initial conditions, except for 
models with high viscosity contrasts (IXl/•t2~1000)at high 
strains (0.1). Thus, estimates of horizon'tal strain from the 
topographic expression of folding alone may be possible if 
the dynamic range of initial surface topography with length 
scales comparable the dominant wavelength can be reasonably 
bounded. Buoyancy forces slow the rate of fold amplification, 
but are inadequate to prevent folding for a range of realistic 
lithospheric structures. 
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