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Abstract. We study the development of finite amplitude folding of the lithosphere through the
application of finite element models characterized by both discontinuous (layer over half-space)
and continuous (strength envelope) viscosity distributions. Both models include strongly strain
rate-dependent rheologies that approximate slip on pervasive faults. Folding with layers of
uniform, contrasting viscosities is driven solely by the magnitudes of discontinuities in
viscosity at layer interfaces; however, folds may also develop in a medium with a continuously
varying viscosity distribution. The net driving force for folding in a region of continuous
viscosity variation is the same as the driving force across a discontinuity with the same net
viscosity contrast. Continuous and discontinuous viscosity variations give essentially identical
fold growth rates if the depth over which the viscosity varies is small compared to the
wavelength of folding or the depth of the viscosity variation. In the uniform viscosity layer
model, flexural bending of the layer results in a state of extension on topographic highs and
compression in topographic lows. In contrast, the strength envelope model is characterized by
significant penetrative shortening near the surface that results in a state of compression
everywhere along the fold. This model predicts layer thickening beneath fold troughs, as
observed in the intraplate deformation zone in the ceniral Indian Ocean. Buoyancy forces retard
the rate of fold amplification but are inadequate to prevent folding for a range of realistic

lithospheric rheological structures.

Introduction

The characteristic wavelength of folding in 2 medium that is
theologically layered perpendicular to the direction of
shortening has long been recognized to be a sensitive function
of thicknesses and viscosities (or strengths) of the layers
[Biot, 1957]. Folding models that relate the dominant
wavelength of folding to layer thickness and viscosity
contrasts have been extensively applied to determine the
relative viscosities of discretely layered strata on the
geological outcrop scale [e.g., Johknson, 1970; Fleicher,
1974, 1977]. More recently, the observed wavelengths of
much larger scale folds (~101-102 km) have been used to infer
the vertical rheological structure of the mechanical
lithosphere. Lithospheric-scale folds have been identified on
the continents [Biot, 1961], in ocean basins [Weissel et al.,
1980], end on planetary surfaces such as Venus [Campbell et
al, 1983]. Models that address the nature of lithospheric-
scale folding include analytical solutions for flexure of thin
elastic [Turcotte and Schubert, 1982; Karner and Watts, 1983;
Karner and Weissel, 1990a,b], viscoelastic [Lambeck, 1983]
or elastic-plastic [McAdoo and Sandwell, 1985] plates;
lincarized analytical and numerical solutions of the Navier-
Stokes equations for viscous flow for media with a single
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theologically strong layer [Zuber, 1987a; Martinrod and Davy,
1992]; and numerical small-amplitude solutions for media that
contain multiple strong lithospheric layers [Ricard and
Froidevaux, 1986; Zuber, 1987b; Zuber and Aist, 1991].

A number of notable simplifications characterize previous
lithospheric-scale folding models.  First, as illustrated
schematically in Figure 1, most models assumed viscosity or
strength distributions that are discontinuous with depth, unlike
the distribution of strength in the lithosphere as supported by
rock mechanics experiments [Byerlee, 1968; Brace and
Kohlstedt, 1980; Kirby and Kronenberg, 1987]. For example,
Figure 1a represents the structure assumed in most flexural
folding models, a strong, uniform rigidity layer that overlies a
weak or inviscid substrate. For the structure in Figure la the
primary driving force for fold development arises from the
contrast in Young's modulus (for elastic models), viscosity (for
viscous models), or yield stress (for plastic models} between
the strong surface layer and the much weaker substrate. Since
the lithosphere probably does not contain discrete layers of
contrasting uniform strength, this model overestimates the
tendency for folding instabilities to grow.

An altenative approach (Figwe 1b) is to consider
deformation of a continuously stratified medium in which
strength is uniform near the surface and decreases as a simple
exponential function of depth to approximate the temperature
dependence of ductile strength in the lithosphere. In this case
the strength profile is everywhere continuous, and the
tendency for fold growth is driven by the viscosity gradient.
However, additional driving terms that arise from folding of
initially horizontal surfaces of constant viscosity have not
been included in previous analytical models of this structure
[Biot, 1960; Zuher, 1987a], and the models therefore
underestimate the tendency for folds 1o grow. Neither models
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Figure 1. Schematic rheological representations of viscosity (i) or strength (1' = zﬂén) _versus depth (z)
for a model lithosphere in a state of horizontal compression. (2) Structure corresponds to a high strength layer
that overlies a lower strength layer. (b) Structure is characterized by a high strength layer that overlies a layer

with exponentially decreasing strength.

(c) Structure corresponds to vertical strength profile in the

lithosphere based on laboratory experiments of brittle (straight line) and ductile (curved line) deformation. In
models in Figures 1b and 1c, strength is everywhere continuous within the lithosphere.

with discrete layers nor exponental viscosity variation closely
approximate the distribution of strength of the lithosphere
(Figure 1c) and both are valid only for infinitesimal fold
amplitudes. Thus these formulations cannot be applied in
areas that have undergone large strains that are characteristic
of some fold belts [¢f. Plartt et al.,, 1983].

In this swdy we develop a more realistic quantitative
representation of lithospheric-scale folding, by constructing
finite element models of a lithosphere undergoing uniform
horizontal shortening. These models incorporate general
viscosity strucrures, treat both Newtonian and non-Newtonian
flow, and are valid at finite strains. To provide a physical
foundation for our analysis, we first compare finite element
solutions for Newtonian viscous folding at small strains with
previously published linearized infinitesimal amplitude
solutions for the same rheological structures. We then
examine the effect on the style of folding of a non-Newtonian
viscosity distribution that more realistically represents the
rheology of the lithophere and address how well the simplified
structures assumed in previous studies approximate folding of
the lithosphere. Finally, using the intraplate deformation
zone in the central Indian Ocean as an example, we address the
conditions under which observed surface topography and
surface strain can provide insight into the subsurface structure
of large-scale folds.

Formulation

Finite Element Solutions for Finite Amplitude
Folding

To calculate the deformation pattern in a horizontally
shortening medium with an arbitrary, continuous viscosity
stratification, we employ a finite element approach based on a
penalty function formulation for viscous, incompressible
flow. In this approach, the pressure term from the equilibrium
equations is eliminated using the expression

4 j=-plx (1)

where % is the penalty parameter that corresponds to a bulk
viscosity of the material and u; are the velocities. For large

values of ¢, the incompressibility condition u;; =0 in the
finite element solution is approximately satisfied "fe.g., Bathe,
1982].

The effect of non-Newtonian rheology was included by
implementing a simple incremental procedure [e.g., Desai and
Abel, 1972] to calculate the viscosity at each time step or
deformation increment. The model assumed a strain rate-
dependent viscosity of the form

1L
n=u, [L:l " @

£

where |1, is the reference (initial) viscosity, &, is the secomd
invariant of the strain rate tensor, and n is the power law
exponent of stress in the stress-strain rate relationship. To
simulate the rheology of the lithosphere in the ductile creep
regime, we used a power law exponent of ~3, while in the
brittle regime we invoked the assumption of perfect plasticity
in which n —< to approximate a material that deforms by
pervasive faulting. .

We used two approaches to calculate non-Newtonisa
deformation. In the first the viscosity was determined by
stepping forward one-half time step, reforming the global
stiffness matrix, calculating the viscosity field at the half time
step and solving for the velocity field, then using the
velocities at the half time step to advance the positions of the
node points over the full time step. In the second approach we
stepped forward one full time step and used the average strain
rates from the current and previous time steps in reforming the
global stiffness matrix and recalculating the velocity field
Then the solution for the velocity field was iterated until 8
convergence criterion was satisfied. In both approaches, the
perurbed (non-Newtonian) viscosities were used at the next
time step. We investigated models for various mesh
resolutions, progressively increasing the number of elements
in the mesh until the solutions no longer changed.

Boundary Conditions

The grid geometry and boundary conditions for the finits
element mo&l are shown schematically in Figure 2. The

boundary represents a symmetry plane on which the horizonts
velocity u and shear stress T vanish. The top boundary 18
stress free, and on the bottom boundary, T and the verticdl
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Figure 2. (a) Schematic of the finite element problem illustrating boundary conditions and normalization of
the mean horizontal strain rate €. (b) Viscosity structure described by equation (6). (c) Viscosity structure
for a strength envelope distribution of viscosity described by equation (7).

velocity w vanish. On the right boundary, T vanishes and u is
assigned a constant value. The horizontal and vertical grid
dimensions were chosen to be A/2 and 1, respectively. %’he
dimension A corresponded to the wavelength of the initial
perturbation introduced. The values of the imposed horizontal
velocity u were selected to yield a normalized horizontal strain
e £ with a value of -1. This normalization permits
growth rates determined from the finite element analysis to be
directly compared to those from previous infinitesimal
amplitude solutions [e.g., Fletcher, 19%, 1977; Zuber, 1986].
In the finite element models the growth rate g was determined
from the slope of the relationship between the nawral log of
the root-mean-square (rms) amplitude of deformation and the
mean horizontal strain €.t (see equation (4)).

Linearized Finite Amplitude Solutions

Determination of the dominant wavelength in a
horizontally shortening, rheologically stratified medium
entails solving the Navier-Stokes equations for plane, quasi-
static flow. Analytical or nearly analytical solutions of these
equations that are valid to first order in the perturbing flow
have been obtained for media consisting of a layer of uniform
strength that overlies a layer or halfspace in which strength is
cither uniform or decreases exponentially with depth (Figure
12 and 1b). Such solutions describe the initial stages of
deformation, when the length scale of folding is presumably
established [Biot, 1961]. The dominant wavelength, which is
controlled by the thicknesses of the strong layers and other
mechanical properties of the medium, corresponds to the wave
rumber kg or wavelength Ag=2r/kq at which the dimension-
less growth rate ¢ of the folding instability is maximized. For
wiform horizontal compression, the growth rate is related to
the amplitude of vertical displacement of a random initial
perturbation, Aj(k,t), at the ith interface at time ¢ by the
expression

A= A,-(Ic,o)exp[(l +q)Ext— 1] (3)
where A,(k,0) is the amplitude of the initial perturbation and
€ is mean horizontal strain rate. Folding with a

dominant wavelength develops when the magnitude of the
mitia] perturbation amplifies with time, which occurs when the
sgument of the exponential term in (3) is greater than unity.

The growth rate can be expressed by rearranging (3) to give

AJA
q=ﬂ_l_’]_1 @)

Ex

This parameter, which is nondimensionalized by £,,, provides
4 quantitative measure of the degree to which a medium is
unstable with respect to folding, with fold development
dynamically possible for g>1. The dominant wavelength A4
oonesponds to the wavelength at which g attains a maximum
value for a given set of parameters that describe the thickness
and viscosity structure of the medium.

Determination of the Dominamt Wavelength

From linearized, infinitesimal amplitude solutions for
simple li structures like Figures ta and 1b, A4 can be
calculated directly by analytical methods. However, the
wavelength of folding in more complex rheological models
like Figure lc must be determined numerically. Because in
finite element models, grid dimensions often influence the
wavelength that develops, we imposed the wavelength as an
initial condition. In finite element models with viscosity
distributions for which analytical solutions are available, the
dominant wavelength from the analytical solution was
imposed and the growth rate was calculated. The growth rates
from the enalytical and finite element solutions were then
compared. For more complex viscosity struchures, it was
necessary to make an initial estimate of Ay calculate the
growth rate, then vary A4 until the value that amplified fastest
was found. We imposed the initial wavelength in two ways.
First, as illustrated in Figure 2, we defined the horizontal
dimension of the grid to correspond to a half wavelength of
deformation. Second, we defined an initial layer thickness

perturbation d with a hermonic form
o> | =
3= 2, +4, Gll{m-]lm['—z—] (5)
where 3, represents the interface at which the
petmzbu?onwnimposed. A is the wavelength, and &, is 2

small (<<layer thickness) initial perturbation amplitude.
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Figure 3. Comparison of linearized infinitesimal amplitude solution for high viscosity/low viscosity layer
case and finite element solutions for the viscosity structures shown in the inset. For small 4 the viscosity
structure in the finite element model approximates that of a high, uniform viscosity layer that overlies a low,
uniform viscosity layer. For large d, the viscosity distribution displays a gradual gradation from high
viscosity at the top to low viscosity at the bottom of the medium. The linearized solution agrees with the
finite element solution in the limit of small d (~0.01). Note that for the range of cases examined the growth
rates g exceed 1, indicating that the lithosphere is unstable with respect to folding. Parameters assumed in
both the linearized and finite element solutions are py/po=100, z;,,,=038, and nj=ny=1.
Results

Uniform Viscosity Layer Models

In horizontally shortening media consisting of vertically
stacked uniform viscosity layers, the growth of folding
instabilities primarily reflects viscosity contrasts at layer
interfaces. We wish to quantitatively assess the extent to
which the driving force associated with a vertical discontinuity
in viscosity within a layered medium is required for fold
growth. To address this question, we investigated simple
folding models for a Newtonian viscous lithosphere that
consists of a high viscosity layer over a lower viscosity layer
(Figure 1a). First, in order to test the accuracy of the finite
element model, we compared growth rates calculated for a
linearized infinitesimal amplitude analytical solution for this
rheological structure to those determined for a numerical model
with the same structure. We then analyzed the importance of
viscosity discontinuities in driving fold growth by comparing
these results to finite element solutions for structures with
continuous viscosity variations.

To investigate the stability of both continuously and
discontinuously stratified media, we assumed in the finite
element models a viscosity distribution of the form (Figure 2b)

. )

+”~1_ﬂ2 ml:z_zim] (6
2 2 d

where |11 and [y are the viscosities at the top and bottom of
the medium, zj,, is the viscosity transition depth, and d
defines the sharpness of the transition. The inset of Figure 3
shows plots of (6) for a range of d values. For small d the
viscosity distribution corresponds to that for a medium with
two layers of uniform viscosity with a viscosity contrast al
the interface between the layers of [y/jl9. Li
solutions exist for this structure [Fletcher, 13‘77]. Larger d
corresponds to & medium in which viscosity varies gradually
with .depth. .
The net driving force for folding in a region of continous
viscosity variation is the same as that across a disconti
with the same net viscosity contrast. So long as the
over which the viscosity varies is small compared to the
wavelength of folding or the depth beneath the free surface of
the viscosity wvariation, continuous and discontinuos
viscosity variations should give essentially identical
growth rates. Figure 3 shows results for three values of d alomg
with the analytical infinitesimal amplitude solution fof
folding of a medium consisting of a strong uniformly viscow
layer over a weak uniformly viscous layer (d=0). funite

i
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Figure 4. Determination of the dominant wavelength from growth rate curves. (a) Strength envelope
viscosity distribution. (b) Relationships between rms amplitude and mean horizontal strain (g,.7) for model
in Figure 4a. Solutions are shown for for three different imposed wavelengths A. The dominant wavelength,
Ag4/h1=3.8, corresponds to the maximum growth rate of folding g, which is obtained from the slopes of the
lines. Note that longer and shorter wavelengths yield smaller growth rates. Parameters in the solution include

B1=100, py=0, z;,=0.8, n;=100, n5=3, and z=0.1.

element solutions in the limit of small d can be to
linearized solutions for layers bounded by discontinuities.
Note that the analytical and finite element solutions for
d=0.01 are in good agreement corresponding to a sharp falloff
in viscosity with depth. The difference between the solutions
at large py/Hy and small d is a consequence of numerical
resolution.

Figure 3 shows that previous linearized analytical solutions
provide a reasonable approximation for the growth rate of
folding for small strains. The amount of strain up to which the
solutions agree is sensitive to details of the rheological
structure, but the analytical and numerical growth rates
generally agree to within approximately 15% up to strains of
~0.05 or more.

Growth rates for d=0.1 and 0.2 in Figure 3 are reduced
because the depth scale of the viscosity is comparable to the
layer thickness. However, even for the largest value of 4
shown (=0.2), which represents a very smoothly varying
viscosity distribution, ¢ exceeds unity for all gy/po, which
indicates that folding instabilities will amplify in 2he medium.
Figure 3 quantitatively illustrates that sharp changes in
viscosity favor the amplification of folding instabilities but
that a discontinuity in viscosity is not required for folding.
Biot [1960] came to a similar conclusion for the specific case
of a compressing, continuously stratified viscoelastic half
Ke in which viscosity exponentially with depth.

present study shows that this conclusion holds for more
general viscosity distributions.

Our approach for computing finite amplitude deformation
differs from those used in previous models of folding of single
layers.  Finite amplitude folding has been examined via
analytical theory for & uniform strength layer [Chapple, 1968]
but did not treat general strength distributions. Past numerical
swdies [Dieterich, 1969; Dieterich and Carter, 1969;
Hudleston and Stephansson, 1973; Parrish, 1973] did not
make use of reduced integration on the penalty terms in the
finite element formulation that allows accurate numerical
calculation of the viscous flow field. In the limit of
infinitesimal amplitude deformation, none of these studics
le reproduced linearized analytical solutions [Fletcher,

Strength Envelope Models

The vertical distribution of strength in the lilhozhm as
constrained by laboratory experiments [Byerize, 1968; Brace

and Koklstedt, 1980; Kirby and Kronenberg, 1987] is more
complex than the viscosity structures assumed in previous
lithospheric folding models, including those discussed above.
Experiments indicate that strength in the shallow lithosphere
in compression increases approximately linearly with depth
due to the pressure dependence of brittle deformation and
changes to a region in which strength decreases exponentially
with depth due to the ature of ductile flow. A
schematic of a simplified "yield strength envelope” for the
lithosphere is shown in Figure 1c. The next objective of our
study is to use the finite element approach to investigate
deformation in 2 model lithosphere that incorporates this
argusbly more realistic strength envelope distribution of
viscosity. In these models we incorporate nonlinear ts of
viscous flow, since # —ee in the brittle regime and #~3 in the
ductile flow regime.

Figs. 2a and 2c illustrate the boundary conditions, grid
geometry, and physical parameters for the strength envelope
model. For this structure the viscosity p takes the form

1-—-

#(!)-'-(#l-ﬂz)l =ty 727 ()
in the brittle regime snd
Z2—Zim

#(z)= py exp 222 )

4

in the ductile regime, where |1 is the viscosity at the brittle-
ductile transition and [y is the viscosity at the surface. The
parameter z is the depth over which viscosity in the ductile
regime falls by a factor of 1/e, which approximates the
termy ure-dependence of viscosity .

boundary conditions and grid geometry, shown in
Figure 2, are the same as for the simpler Newtonian layer
models discussed in the previous section. However, for the
more complex rheological structures investigated in this
section it was not possible to define the dominant wavelength
a priori, using results from lincarized infinitesimal amplitude
solutions. Instesd, it was necessary to make an initial guess as
to the dominant wavelength, calculate ¢, and then change both
the horizonta! grid length s velocity of shortening m order
to identify wavelengths that may have greater g values. Figure
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Figure 5. Figure 5b shows relationships between rms amplitude and mean horizontal strain _(5;;") for a
shortening lithosphere with the viscosity structures in Figure 5a. The growth rates of folding ¢ in Figure 5b
are obtained from the slopes of the lines at strains <0.1. For all values of d, the slopes of the lines decrease at
larger strains, indicating that q also decreases. For d=0.2, q decreases to the limiting value of 1, indicating
that the medium no longer deforms by folding but solely by uniform horizontal shortening. Parameter values
for this calculation are [y=100, Wy=0, z;,=08, n;=100, and n,=3.

4b shows relationships between rms amplitude and mean
horizontal strain £,,¢ for a shortening lithosphere with the
viscosity structure in Figure 4a. The initial growth rates of
folding q are obtained from the slopes of the lines at strains
<0.1. The solutions are for models assuming three different
imposed wavelehgths A. The plot shows that different growth
rates are obtained for different wavelengths of folding. The
wavelength corresponding 1o the maximum value of g is the
dominant wavelength. Wavelengths that are longer (A=4A4/3)
or shorter (A=3A,/4) than the dominant wavelength have
shallower slopes and correspondingly smaller growth rates.

Figure 5 shows estimates of ¢ for folding at the dominant
wavelength for three viscosity distibutions with fixed
thickness and viscosity structure in the brittle layer and
different values of z of the ductile layer. In each case, ¢ exceeds
the critical value of one, which indicates that lithospheres
with all of these viscosity distributions fold (rather than
shorten uniformly) when horizontally shortened. As for the
infinitesimal amplitude solutions [Biot, 1960; Zuber, 1987b],
the rate of fold growth is greater for smaller z. The solutions
in Figures 4 and 5 demonstrate that a medium with a viscosity
distribution that approximates the vertical distribution of
srength in the lithosphere can develop folds when
horizontally shortened.

Both Figures 4 and 5 illustrate that with decreasing z, ¢
progressively decreases with increasing horizontal strain Exqt,
which indicates that folds will grow more slowly with
increasing strain. In fact, for the case of 2=0.2, q decreases to
the limiting value of 1. This corresponds to purely passive

lification in which the folds grow at a rate equal to the rate
of horizontal shortening. Deformation of the medium in that
case is accommodated solely by uniform thickening of the
medium rather than by a combination of thickening and
folding.

Topography, Surface Strain, and Crustal
Thickness

In outcrop-scale folding models, observations of the
wavelength and thickness of the folded layer provide
information on the viscosity contrast between the layer and its
surrounding matrix [Biot, 1957; Johnson, 1970]. For folding
on the scale of the lithosphere, however, only the wavelength

is directly observed; details of the lithosphere strength
structure are sought from the models. We are thus motivated to
assess whether other observed aspects of the deformation cm
provide additional constraints on the subsurface structure.

Figure 6a shows the deformation pattern, as derived from
the velocity field, associated with folding of a modd
lithosphere consisting of a strong, uniform viscosity layer
that overlies a weaker viscous layer for a mean horizontal
strain of 0.2. Deformation occurs by flexural folding in whick
the layer bends sinusoidally while retaining constant
thickness, Figure 6b shows the effect of folding of 2
lithosphere with a strength envelope distribution of viscosity
for the same mean strain. In this case the weak area near the
surface concentrates strain as horizontal shortening
progresses, particularly in fold roughs. Folds in the strength
envelope model are thus characterized by layer thickening
beneath topographic lows. While the deformation patterns iz
the two models are distinctive, it is not clear whether the
models could be distinguished on the basis of their surface
topographic expressions alone. The presence or absence of
crustal thickening beneath topographic lows, however, whick
could be detected from seismic imaging of the crust, could be
diagnostic of the rheological structure.

Distributions of surface strain associated with the model
viscosity distributions for the same conditions as above me
shown in Figure 7. The models show a similar dynamic range
of surface strain, but the distribution of strain along the fold
differs in the models. In the uniform viscosity layer
(Figure 7a) flexural bending of the layer results in a state of
extension in the topographic highs and compression is
topographic lows. In the strength envelope model (Figure b}
the low strength near the surface relative to that deeper in the
brittle layer results in a state of compression everywhere alosg
the fold, with the greatest amount of shortening it
topographic lows. In this model more strain at the surface it
accommodated by penetrative shortening relative to layer
bending than in the uniform viscosity model. However, M
shown in Figure 6b, the amount of flexural bending in the
stzength envelope model increases significantly over that &
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(b) Deformation of a8 model lithosphere with a strength
this case the brittle surface layer (shaded) deforms by folding

Parameter values assumed include pj/puy=100,

characterized by layer thickening beneath topographic lows. Parameter values are p1=200, y=1, z;,,=0.8,

n1=100, ny=3, z=0.1, $§=0, and £,1=V.L.

the surface in the strong brittle/ductile core of the lithosphere.
These differences persist over a range of model parameters and
suggest that observed distributions of surface strain may be
diagnostic of the subsurface strength stratification.

Application to Folding in the Central Indian
Ocean

Seafloor folding in the central Indian Ocean is a well-
expressed and well-studied example of intraplate deformation
of oceanic lithosphere [Weissel et al., 1980]. Deformation in

this area is characterized by east-west trending topographic
undulations with a wavelength of 100-300 km and amplitudes
of the order of 1-2 km [Weissel et al., 1980; Geller et al.,
1983; Neprochnov et al, 1988]). Large-amplitude, E-W
wrending gravity and geoid anomalies also characterize the
deformation [Weissel and Haxby, 1984; McAdoo and
Sandwell, 1985). Understanding of the nature of horizontal
shortening in this region would constrain the kinematics of
Indo-Australian plate deformation [e.g., Wiens et al., 1985;
Stein et al., 1990; Royer and Chang, 1991] as well as the
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theology of the lithosphere [McAdoo and Sandwell, 1985;
Zuber, 1987b; Karner and Weissel , 1990a].

A finite amplitude flexure model has previously been

lied to the Indian Ocean deformation [Karner and Weissel,
1 ] which addressed why the deformation localized where it
did. This model also constrained the force per unit length
associsted with the deformation. However, that model
contained thin plate approximations and did not address details
of the rheological structure and their relationship to the
deformation. One of the principal outcomes of the analysis
presented in this paper is the prediction, for a lithosphere
characterized by a strength envelope distribution of viscosity,
of thickening of the plastic layer beneath fold trough (Figure
6c). This is in contrast to previous uniform viscosity layer
formulations [Zuber, 1987b; Martinrod and Davy, 1992] which
predict either (constant layer thickness) buckling for a stron
surface layer or layer thickening beneath the ridge for a w
surface layer. Louden [1995] has calculated crustal structure
through analysis of seismic refraction and gravity data for a
typical ridge-trough feature in the Indian Ocean deformation
zone and has reported the crust to be 0.5-1 km thinner beneath
the ridge as compared to the trough. He ascribed the variation
in structure to either lateral flow of serpentinite in the lower
crust, or possibly asymmetric folding due to an unspecified
mechanism. We contend that such a mode of deformation is a
namural uence of horizontal shortening of a lithosphere
with a strength envelope viscosity structure. A more detailed
seismic and gravity survey would provide the basis for testing
whether sucﬁ structure is observed in other areas of the
deformation zone.

Another key «question is the mnawre of strain
accommodation. Strain estimates for the region have varied
considerably, with values <1% derived from seismic moment
tensors [Stein and Okal, 1978; Petroy and Wiens, 1989] and
values up to 10% from plate kinematic models [Wiens er al.,
1985; DeMets et al., 1988, 1990; Gordon et al., 1990]. More
recently, horizontal strains have been estimated to be of order
2-5% from single- and multi-channel seismic profiles [Bull and
Scrutton, 1990, 1992; Chamot-Rooke et al., 1993; Van Orman
et al., 1995],

Analyses based on single channel seismic reflection data
from the deformation 2one [Weissel et al., 1981; Geller et al.,
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Figure 8. Relationships between mms amplitude and mem
horizontal strain (€,r) for three values of the initial
perturbation ampli (A,) for three model lithospheres with
continuous viscosity distributions. () Solutions are for
Newtonian viscous lithosphere with [11=10, po=1, 2j5=0.%
z=0.01. Note that the lines have different y axis intercepts bet
the same slopes for all £,,¢. indicating that the growth rate of
the instability q is independent of the amplitude of the initist

ion for the full range of strain examined. Howews,
the relationship between rms amplitude and horizontal strzin #
dependent on A, over the range of strains. (b) Same as ng:
8a except Wy=1000, u,=1, z;,,~0.8, and 2z=0.01.
horizontal strains >0.1, a given amplitude implies w
strain, independent of A,,. (c) Non-Newtonian lithos with
a strength envelope distribution of viscosity assuming jy=h
Bo=0, Z;,,=0.8, z=0.1, n;=100, and ny=3. Here ¢ s
in%cpmc‘mt of at small strains, but the relationship
between rms amplitude and horizontal strain is dependent e
A, over the range of strains,
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Figure 9. Relationships between mns amplitude and mean
horizontal strain (£ for three values of the
buoyancy/strength parameter § (=plgh1r/2p£u) where p; and
k; are the density and thickness of the surface llayer.

ation assumes |L1=1, Wy=0, z;,,~0.8, z=0.1, »;=100,
md ny=3. Note that even for large §, ¢>1, which indicates that
the medium is unstable with respect to folding.

1983; Chamot-Rogke et al., 1993] found strain due tq faulting
to be of order 107“ and that due to folding to be 10~ or less.
Strain accommodation by faulting was estimated from
observed fault offsets, but strain accommodation via
continium shortening is more challenging to constrain.
Systematically mapping crustal thickness variations in the
region would be a particularly desirable approach to acquiring
more confident estimates. Models like those considered in
this study could relate the amplitude of surface topography to
the horizontal strain for a given rheological structure and thus
may contribute to the understanding of strain accommodation
in the Indian Ocean deformation zone. If one uses as a
constraint published estimates of total strain in this region,
then our models can provide insight into lithosphere rheology
if the amplitude of folding is independent of the amplitude of
the initial perturbation. The assumnes that slip along
felts occurs along plastic slip lines in brittle regions which
e at yield and thus pervasively deforming, so it is possible to
investigate regional averages but not strain associated with
individual faults.

Figure 8 shows calculated fold ampliudes as a function of
horizontal strain for three different viscosity models, each
with a range of initial permurbation amplitudes A,. Figs. 8a
and 8b are for a lithosphere with uniform viscosity Newtonian
layers such as shown in Figure 2b with p/p=10 and 1000,
respectively. Figure 8¢ is for a lithosphere “with a strength
eavelope distribution of viscosity as shown in Fi,%m 2¢c. For
#1M9o=10, the ampitude is a strong function of the initial
pem%ouion. with higher topographic amplitudes for larger
mitial gm'mrbalion amplitudes over the range of strain. For
the hi viscosity contrast in Figure 8b, the solution shows
the seme behavior at low horizontal strains (0.1). However, at
larger strains topographic amplitude becomes i t of
the amplitude of the initial perturbation. For these cases, in
the absence of erosion it would be possible to estimate the
horizontal strain associated with folding from the bathymetric
amplitides of the folds. As shown in Figuwe 8c, the
topographic amplitude for a strength envelope distribution of
viscosity becomes less sensitive to the initial perturbation
amplitude at high strains, but it never becomes i t of

#. In this case, there is no relationship between fold
smplitude and horizontal shortening that is i t of the
the typical

physical faciors present as folding initiated. For U
smplitude of seafloor topography for ocemmic lithosphere
created at the appropriate spreading rate, the average seafloor
at the wav. of Indian Ocean folding is in the

50-100 m [Goff, 1991; Hayes and Kane, l9ﬁl;
Maliverno, 1991]. If Indian Ocean seafloor, before folding.
was typical, estimates of horizontal strain could be derived for
the complete range of models described in this study. For
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example, for a model lithosphere with a rheological structure
of seafloor with an age co ing to that in the Indian
Ocesn at the onset of folding, a horizontal strain of ~6% is
implied for A,/A=10"4, which is in with the
seismic reflection estimates. With knowlege of the crustal
thickness, regional studies relating strain to rheological
structure would be possible.

Buoyancy forces, which would act to resist fold wth,
have been neglected in the above nlodels"l'le::tof
buoyancy can be quantitatively evalusted by varying the
dimensionless parameter, S = pygh / 2jiE,, ;where py =d k)
are the density snd thickness of the surface layer, represents
the ratio of the ancy force due to layer thickness
variations normalized by the average strength of the surface
layer. Small S (~0) corresponds to the limit of a strong layer
in which buoyancy forces are small in magnitude and do not
influence the perturbing velocity field. Large S comresponds to
the limit of a weak layer in which buoyancy forces
significantly affect the of flow. 9 shows
solutions for three § values and illustrates the effect of
buoyancy in damping folding instabilities. As buoyancy
forces become increasingly important (larger S), ¢
progressively decreases, indicating that folds with smaller
topographic amplimdes will develop. However, for the
su'm::u we investigated, buoyancy forces are not large
enough in magnitude in i to lithospheric strength
to prevent folding. For v of § on the order of ue;:}sty.
required to explain the wav of lithospheric folding in
the Indian Ocean [Zuber, 1987b], gravity only slightly reduces
the growth rate.

Condlusions

To better understand the mechanics of finite amplitude
lithospheric-scale folding, we used finite element solutions to
study the development of folds in model lithospheres
characterized by both discontinuous and continuous viscosity
distributions and with strongly strain rate-dependent
rheologies that approximate slip on prevasively destributed
faults. First, we examined the folding of a Newtonian viscous
medium that contains discontinuities in viscosity and
compared the resulis to existing linearized, infinitesimal
amplitude solutions. Growth rates predicted by the finite
element solutions for horizontal strains up to 0.05 or more
agree to within approximately 15% with those predicted from
infinitesimal amplitude solutions. Our results thus
demonstrate that previous linearized models of fokling provide
areasonable approximation of the physics of the growth of
folds for small strains.

In both infinitesimal amplitude and finite element models
of folding with layers of uniform, contrasting viscosities,
folding is driven solely by the magnitudes of discontinuities
in viscosity at layer interfaces. However, our finite eclement
solutions show that media with continuous viscosity
distributions, including structures that approximate the
distribution of strength in the lithosphere as indicated by
laboratory experiments, can also be unstable with respect to
folding. The net driving force for folding in a region of
continous viscosity variation is the same as the driving force
across a discontinuity with the same net viscosity contrast.
Continuous and discontinuous viscosity variations give
essentially identical fold growth rates if the depth over which
the viscosity varies is small compered to the wavelength of
folding or the depth beneath the surface of the viscosity
variation. While a uniform viscosity layer in horizontal
comprossion will deform flexurally (i.e., no change of layer
thickness) for a strong layer and by inverse boudinage (i.e.,
layer thicknening under topographic highs) for a weak layer, a
lithosphere with a strength envelope distribution of
lithosphere viscosity exhibits excess thickening of the layer
beneath the topographic low. This structure has been observed
in the intraplate deformation zone in the central Indian Ocean.

For both Newtonian and non-Newtomian models with
continuous viscosity distributions, growth rates of folding are
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independent of initial conditions for small strains. However,
the relationship between topographic amplitude and
horizontal strain is sensitive to initial conditions, except for
models with high viscosity contrasts (p1/jt9~1000) at high
strains (0.1). us, estimates of horizontal strain from the
topographic expression of folding alone may be possible if
the dynamic range of initial surface topography with length
scales comparable the dominant wavelength can be reasonably
bounded. Buoyancy forces slow the rate of fold amplification,
but are inadequate to prevent folding for a range of realistic
lithospheric structures.
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