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[1] The topography of a terrestrial planet can be supported by several mechanisms:
(1) crustal thickness variations, (2) density variations in the crust and mantle, (3) dynamic
support, and (4) lithospheric stresses. Each of these mechanisms could play a role in
compensating topography on Venus, and we distinguish between these mechanisms in part
by calculating geoid-to-topography ratios and apparent depths of compensation. By
simultaneously inverting for mass anomalies at two depths, we solve for the spatial
distribution of crustal thickness and a similar map of mass anomalies in the mantle, thus
separating the effects of shallow and deep compensation mechanisms on the geoid. The
roughly circular regions of mantle mass deficit coincide with the locations of what are
commonly interpreted to be buoyant mantle plumes. Additionally, there is a significant
geographic correlation between patches of thickened crust and mass deficits in the mantle,
especially for spherical harmonic degree l < 40. These mass deficits may be interpreted
either as lateral thermal variations or as Mg-rich melt residuum. The magnitudes of mass
deficits under the crustal highlands are roughly consistent with a paradigm in which
highland crust is produced by melting of upwelling plumes. The mean thickness of the crust
is constrained to a range of 8–25 km, somewhat lower than previous estimates. The best
two-layered inversion of gravity incorporates a dynamic mantle load at a depth of 250 km.
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1. Introduction

[2] In addition to being our nearest planet, Venus is
similar to Earth in both size and composition. Rocks
sampled by the Venera space probes were determined to
be primarily basaltic in composition, although all the Venera
landing sites were within smooth volcanic provinces [e.g.,
Surkov et al., 1984]. From bulk density arguments the man-
tle is assumed to have a peridotite composition [Fegley,
2004] similar to Earth. In spite of the similarities between
Venus and Earth, however, the two planets have some
conspicuous differences. The most striking difference in a
geological sense is the apparent absence of plate tectonics
on Venus [Kaula and Phillips, 1981; Solomon et al.,
1992], although tectonic comparisons to Earth have been
made [McKenzie et al., 1992; Sandwell and Schubert,
1992] amidst some controversy. Ridge spreading and ocean
slab subduction are the primary sources of heat loss for
Earth, but heat loss on Venus must be facilitated by another
mechanism such as volcanism or thermal convection
without lithospheric motion.
[3] The majority of the surface consists of low-lying

volcanic plains, and the regions of high topography can be
classified either as volcanic rises associated with recent

hotspot activity [Smrekar et al., 2010], or as shallowly
compensated crustal highlands (i.e., crustal plateaus). One
significant exception in this classification scheme is Ishtar
Terra, which, excluding its boundaries, is markedly less
deformed than the other highland regions [Phillips and
Hansen, 1994]. The origin of the crustal highlands has been
attributed to either tectonic thickening of the crust above
mantle downwellings [Bindschadler et al., 1992; Ivanov
and Head, 1996] or massive melting associated with upwell-
ing mantle plumes [Phillips and Hansen, 1998]. Either
of these scenarios represent a significant departure from
the plate tectonics paradigm endemic to Earth, and as such
Venus serves as an important laboratory for testing geodyna-
mical models.
[4] Because the crust contains a large portion of a

terrestrial planet’s incompatible elements, the volume of
crust on a planet is an important parameter for understanding
the extent of melting in the mantle [Rudnick and Gao, 2005].
In the absence of seismic data collection, gravity is the best
geophysical tool for constraining the structure of the interior.
In this paper we will use the relationship between global
topography and gravity data to model crustal thickness and
other parameters in the Venusian interior, first by inferring
apparent compensation depths from geoid to topography
ratios, and then by performing a two-layered inversion of
the gravity field. This two-layered inversion solves for
crustal thickness variations and a lateral distribution of mass
in the mantle.

2. Data

[5] Several robotic missions to Venus have collected
gravity and topography data, of which NASA’s Magellan
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mission provides the most complete set to date. Magellan
collected topography data via radar altimetry and a relatively
high resolution gravitational field via a dedicated gravity
acquisition phase. Magellan altimetry [Ford and Pettengill,
1992] covered 93% of the surface, but the data gaps can be
filled in with altimetry data from Pioneer Venus Orbiter
and Venera 15/16 to produce a more complete map of topog-
raphy. The VenusTopo719 data product (Figure 1) provides
to degree 719 the real spherical harmonic coefficients of
topography using these altimetry data [Wieczorek, 2007].
For the gravitational potential, we use the degree 180
MGNP180U data product (Figure 2), which was based on
Magellan data and augmented with observations from
Pioneer Venus Orbiter [Konopliv et al., 1999] The power
of Venusian topography as a function of spherical harmonic
degree l is roughly proportional to l� 2 due to its approxi-
mately scale-invariant shape [Turcotte, 1987]. At intermedi-
ate wavelengths, the MGNP180U geoid power fits Kaula’s
law (SNN(l)� l� 3, [Kaula, 1966]), which is produced by a
random distribution of density anomalies in the interior
[Lambeck, 1976].
[6] Because we are interested in the relationship between

the two data sets, the topographic data are useful only up
to the resolution of the gravity data. The power spectrum
of the error in the MGNP180U data product surpasses the
power of the coefficients above degree 70 (spatial block size
� 270 km), so we regard this as the nominal global resolu-
tion of the data set. The degree 1 terms correspond to the
offset between the center of mass and the center of figure,
and we remove these from the spherical harmonic expansion
of topography. The actual spatial resolution varies consider-
ably, with a resolution as high as degree 100 near the equator
and as low as degree 40 elsewhere on the planet (see
Konopliv et al. [1999] for a complete resolution map).
[7] When geoid height and topography are plotted with

respect to one another (Figure 3) we can see that the two data
sets have a complex relationship that is poorly fit by a single
linear trend. We will apply potential theory and models of

topographic support to unravel this relationship between
topography and gravitational potential on Venus.

3. Methodology

3.1. The Geoid and Topography

[8] It is useful to express a spherical function f (Ω), where
Ω2 (θ,’) represents position on the surface of a sphere, as a
linear combination of real spherical harmonics

f Ωð Þ ¼
X1
l¼0

Xl
m¼�l

flmYlm Ωð Þ; (1)

flm ¼
Z
Ω
f Ωð ÞYlm Ωð ÞdΩ (2)

where flm denotes the spherical harmonic coefficient at
degree l and order m for the function f(Ω), and Ylm(Ω)
denotes the functions

Ylm Ωð Þ ¼ �Plm cosθð Þ� cosm’ m≥0
�P lj jm cosθð Þ� sin mj j’ m < 0

�
(3)

[9] Here θ is the colatitude, ’ is the longitude, and �Plm
are 4p-normalized associated Legendre polynomials [Kaula,
1966]. The power spectrum of f is defined to be the sum of
the squared spherical harmonic coefficients at each degree l

Sff lð Þ ¼
Xl
m¼�l

f 2lm: (4)

[10] The height of the gravitational equipotential surface
N(Ω) (the “geoid”) at the planetary radius R can be calcu-
lated from the gravitational potential field, U(Ω,r), using
a first-order Taylor series approximation over the radial
coordinate r

−180˚ −120˚ −60˚ 0˚ 60˚ 120˚ 180˚

−60˚

−30˚

0˚

30˚

60˚

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11

km

Tellus
Regio

Beta Regio
Ulfrun

Regio

Atla Regio

Phoebe Regio

Alpha
Regio

Ovda
Regio Thetis Regio

Atalanta
Planitia

Ishtar Terra

Figure 1. Venus topography (scale in km), rendered out to spherical harmonic degree 719. Spherical
harmonic topography coefficients from VenusTopo719.
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U Ω;Rþ drð Þ ¼ U Ω;Rð Þ þ @U Ω;Rð Þ
@r

N Ωð Þ: (5)

[11] Equation (6) is sometimes called Bruns’ formula, and
the radial derivative of potential is the surface gravitational ac-
celeration g, which we will consider to be constant (dominated
by l=m=0 term, g0) over the surface. The static geoid pertur-
bation NB(Ω) produced by an interface B(Ω) at depth d with a
density contrast ΔrB can be calculated using an upward-
continuation factor in the spherical wave number domain

NB
lm ¼ 4pGRB

g 2l þ 1ð Þ
RB

R

� �lþ1

ΔrBBlm; RB≤R (6)

where the subscript “lm” on NB
lm indicates the spherical

harmonic coefficients of NB (likewise for Blm), G is the

gravitational constant, R is the planetary radius, and the
radial position of the interface B is RB =R� d. In spherical
geometries it is mathematically succinct to work with radii
rather than depths, so we use notation of this form. Some
deep-seated topographic compensation sources, such as
thermal density anomalies or dynamic support, are not
associated with relief on an interface. Therefore, when we
characterize mantle compensation in section 3.2, it is more
physically appropriate to replace the product ΔrBBlm in
equation (6) with a load term Ψlm, signifying anomalous
mass per unit area. In the case where surface topography is
supported exclusively by relief on the crust-mantle interface
W(Ω) (the “Moho”), the observed geoid is equal to the sum
of the geoid contributions from planetary shape H(Ω)
(“topography”) and from W

NAiry ¼ NH þ NW (7)

where NH and NW refer to the static contributions to the
geoid at r =R from H and W, respectively.
[12] The ratio of geoid height N to topography H is fre-

quently used to characterize the compensation of topography;
in the spectral domain this nondimensional ratio is known as
the “admittance spectrum”, and in the spatial domain it is
called the “geoid-to-topography ratio” (GTR). When a com-
pensation model is assumed, a GTR can be used to calculate
the isostatic compensation depth at which the amplitude of
the observed geoid is reproduced. In the Airy crustal compen-
sation model, the weight of topography is balanced by the
buoyancy associated with Moho relief W

rcg �H ¼ � RW

R

� �2

Δrg �W (8)

where RW is the radius of the Moho, �H ¼ H � N, �W ¼ W �
Nr¼RW , andNr¼RW is the local equipotential surface at r=RW.
If the gravitational acceleration does not change with depth
and if we ignore the contributions of equipotential surfaces, this
reduces to a requirement that mass is conserved in a vertical
column. We note a subtle distinction between H and �H .
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Figure 2. Venus geoid (scale in meters) rendered out to spherical harmonic degree 90. Contour spacing
is 20 m. Spherical harmonic gravitational potential coefficients from MGNP180U.
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While we have been referring to the planetary shape H as
“topography”, it is common in geophysics literature to reserve
the term “topography” for the planetary shape in excess of
the geoid [e.g., Smith et al., 1999]. Therefore, what we now
call �H is, by some conventions, true topography.
[13] The degree-dependent ratio of geoid height to

topography (the admittance spectrum, Zl), can be found by
assuming a compensation mechanism and a depth of
compensation d. We calculate the admittance spectrum for
Airy isostatic compensation by inserting equations (6) and (8)
into equation (7), neglecting the depth dependence of gravita-
tional acceleration and the contributions of local equipotential
surfaces

ZAiry
l ¼ Nlm

Hlm
� 4pGRrc

g 2l þ 1ð Þ 1� R� d

R

� �l
" #

: (9)

[14] The superscript label “Airy” indicates that this admit-
tance function Z corresponds to Airy isostatic compensation.
When the depth d is inferred from the observed geoid and
topography, it is called the “apparent depth of compensation.”
For crustal compensation, d is the Moho depth R�RW.
[15] Because the ratios of geoid to topography resulting

from Airy isostasy have a linear and quadratic dependence
on finite-amplitude topographic height [Haxby and Turcotte,
1978], it is possible in some situations to distinguish
between Airy isostatic compensation and Pratt isostatic
compensation, which assumes compensation via lateral
density variations and depends only linearly on topogra-
phy. In particular, Kucinskas and Turcotte [1994] and
Kucinskas et al. [1996] systematically tested Airy and Pratt
compensation models for various Venusian highland
regions. For topographic heights less than a few kilometers,
the quadratic term for Airy isostasy is small, making it
difficult to reliably distinguish between the two compensa-
tion mechanisms over a majority of the planet’s surface.
However, we note that ideal Pratt compensation is
unlikely on Venus: a relatively large density contrast
of 400 kg m� 3 between the lowest and highest points on
the surface would require a global compensation depth
(� mean crustal thickness) of about 100 km, but this
compensation depth is likely precluded by the granulite/
eclogite phase transition (see section 3.4). Therefore, we
will not address the possibility of significant density varia-
tions within the crust other than to say that the results of
previous studies do not broadly contradict our assumption
of Airy crustal compensation.
[16] Wieczorek and Phillips [1997] showed that if a

compensation mechanism is independent of position, the
GTR associated with that mechanism can be represented
by a sum of spectrally weighted admittances

GTR ¼
X

l
SHH lð ÞZlX
l
SHH lð Þ : (10)

[17] If the unknown topography resulting from a com-
pensation mechanism is assumed to have a scale-invariant
distribution (i.e., SHH(l)/ l� 2), then the GTR can be ap-
proximated for an arbitrary configuration of the compensat-
ing source as

GTR ¼
X

l
l�2ZlX
l
l�2

: (11)

[18] We can measure GTRs on the surface of Venus by
performing minimum variance fits of the observed geoid
and topography. This requires sampling the geoid and
topography at equally spaced points over the surface of the
planet; e.g., Hi=H(Ωi). After sampling the geoid and topog-
raphy on an octahedrally projected mesh at about 100,000
points (i.e., a sample spacing much finer than the resolution
of the spherical harmonic data set), we minimize the sum of
the squares of the windowed residuals, denoted by Φ:

Φ ¼
X
i

oi GTR�Hi þ y� Nið Þ2 (12)

where y is the geoid offset and oi is a windowing function.
We use a simple cosine-squared window to provide a local-
ized fit with a sampling radius a centered at x0

oi ¼ cos2
p
2a

‖xi � x0‖
� �

‖xi � x0‖ ≤ a
0 ‖xi � x0‖ > a

(
(13)

where xi is the Cartesian location of the ith sample. By
minimizing Φ with respect to GTR and y we can solve for
GTR at a point x0 on the surface

GTR ¼
X

i
HiNioi�

X
i
oi �

X
i
Hioi�

X
i
NioiX

i
H2

i oi�
X

i
oi �

X
i
Hioi

� �2 ; (14)

where all the summations cycle through i. Note that when oi

is defined to be a step function of unit magnitude, equation
(14) reduces to the ratio Cov(Hi,Ni)/Var(Hi).
[19] An admittance function such as the one given in

equation (9) predicts the ratio of geoid to topography as a
function of spherical harmonic degree, but does not accom-
modate information about spatially varying compensation.
On the other hand, a GTR calculated with a spatial regres-
sion is a function of position but loses any spectral informa-
tion. Both of these mathematical tools have been used to
characterize depths and mechanisms of compensation [e.g.,
Kiefer and Hager, 1991; Smrekar and Phillips, 1991], but
there will always be a tradeoff between spatial resolution
and spectral fidelity. Spatio-spectral localization techniques
[Simons et al., 1994, 1997; Wieczorek and Simons, 2007]
blur the line between these two approaches by calculating
admittance spectra within a localized taper. This approach
retains some information in the wave-number domain while
accepting a certain amount of spatial ambiguity. Anderson
and Smrekar [2006] used spatio-spectral localization to test
isostatic, flexural, and dynamic compensation models over
the surface of Venus. These techniques necessarily exclude
the longest wavelengths, which account for the bulk of the
power of the geoid and topography due to the red-shifted
nature of both data sets. In contrast, our two-layered inver-
sion (section 3.4) incorporates all wavelengths.

3.2. Dynamic Flow

[20] We have thus far considered only isostatic compensa-
tion mechanisms, but we can generalize our analysis to

JAMES ET AL.: VENUS CRUSTAL THICKNESS

862



dynamic flow in the Venusian interior. Richards and Hager
[1984] introduced some depth-dependent kernels in their anal-
ysis of dynamic topography, three of which are pertinent to our
analysis. The first is the dynamic component of the geoid
normalized by the mantle mass load (the “geoid kernel”)

Gdyn
l ¼ Ndyn

lm

Ψlm
(15)

where Ndyn(Ω) is the component of the geoid produced by
dynamic flow and Ψ(Ω) is a sheet mass, which drives viscous
flow. The second kernel we use is simply the gravitational
admittance associated with dynamic flow:

Zdyn
l ¼ Ndyn

lm

Hdyn
lm

(16)

where Hdyn(Ω) is the component of topography produced
by dynamic flow. When considering the effects of self-
gravitation, it is sometimes convenient to use an adjusted
admittance function

�Zdyn
l ¼ Ndyn

lm

Hdyn
lm � Ndyn

lm

¼ 1

Zdyn
l

� 1

 !�1

: (17)

[21] The third kernel gives the surface displacements nor-
malized by the mantle mass load (the “displacement kernel”)

Ddyn
l ¼ Hdyn

lm

Ψlm
¼ Gdyn

lm

Zdyn
lm

: (18)

[22] These three kernels can be analytically calculated for
a loading distribution within a viscous sphere (see Appendix
B). We have plotted the kernels in Figure 4 for a number of
parameters, including elastic thickness, surface boundary
conditions, viscosity structure, and loading depth. The geoid
and displacement kernels are generally negative, and they
approach zero at high spherical harmonic degrees. This
means that a positive mass load Ψ is associated with a
negative geoid and topography at the surface, and that
shorter wavelength mass loads have relatively subdued
surface expressions. The admittance kernel is significantly
red-shifted, with higher geoid-to-topography ratios at longer
wavelengths. We can also use Figure 4 to qualitatively
understand the effects of parameter values on the dynamic
kernels. A free-slip surface boundary condition results in a
slightly reduced admittance at the lowest degrees, and a
thicker elastic lithosphere decreases the admittance at high
degrees. Viscosity profiles that increase with depth result
in complex dynamic kernel plots, but generally decrease
the admittance spectrum. A deeper loading depth increases
the admittance spectrum across all degrees, but results in a
subdued surface expression of the geoid and topography at
short to intermediate wavelengths.
[23] Given that strain rates on Venus are likely to be small

[Grimm, 1994], the surface can be modeled as a no-slip
boundary, and a free slip boundary condition approximates
the coupling between the mantle and the liquid outer core
at radius r=RC. Other authors [e.g., Phillips, 1986; Phillips
et al., 1990; Herrick and Phillips, 1992] have examined
the appropriateness of various viscosity structures and

concluded that Venus lacks a low-viscosity zone in the up-
per mantle. Other studies have suggested that Venus may
have a viscosity profile that increases with depth, similar to
Earth’s viscosity structure [Pauer et al., 2006]. For the sake
of limiting the parameter space, we assume an isoviscous
mantle and only qualitatively consider the effects of more
complex radial viscosity profiles. See Table 1 for a summary
of the variables, parameters, and kernels used in this paper.
[24] The spherical harmonic coefficients for dynamic

topography are given byHdyn
lm ¼ Ddyn

lm Ψlm, and if the distribu-
tion of the load Ψ is assumed to be scale-invariant then
the power of dynamic topography is proportional to

Ddyn
l

� �2
l�2 and the observed GTR for a dynamic model

can be calculated:

GTR ¼
X

l
Ddyn

l

2
l�2Zdyn

lX
l
Ddyn

l

2
l�2

: (19)

[25] Various theoretical curves quantifying the relation-
ship between GTR and compensation depth are summarized
in Figure 5 for dynamic and Airy isostatic compensation.
The GTR associated with Airy isostatic compensation calcu-
lated in a Cartesian coordinate system is linear with depth,
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viscosity increase at a depth of 200 km, and viscosity model
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but Wieczorek and Phillips [1997] showed that
this calculation will underestimate the true compensation
depth in a sphere. In contrast, the GTR associated with
dynamic flow (equation (19)) is much larger for a given
loading depth. However, these relationships assume a global
sampling of geoid topography, and a windowing of N and H
such as the one given in equation (13) will invariably under-
sample the longest wavelengths of the admittance spectrum.
The relationship between the power of windowed data and
spherical data for Slepian tapers is stated explicitly in
equation (2.11) of Wieczorek and Simons [2007]. Because
the dynamic flow kernel is largest at low degrees (see
Figure 4), a windowed measurement of a dynamically com-
pensated GTR will be smaller than a global measurement for

the same compensation mechanism. In order to quantify the
effect of window size on the observed GTR, we created
synthetic data sets by randomly generating topography
spectrally consistent with Venus’ and calculating geoids
for dynamic compensation in the wave number domain
according to equation (16). We then performed regression
fits of geoid to topography using windows with sampling
radii of a = 600, 1000, and 2000 km. The expectation values
of these windowed dynamic GTRs as a function of loading
depth are listed for select compensation depths in Table 2,
and plotted in Figure 5.

3.3. Support of Topography

[26] The excess mass from surface topography must be
supported through a combination of crustal thickness varia-
tions, a laterally heterogeneous distribution of density,
dynamic flow, and stresses in the lithosphere. We can
constrain the interior structure of Venus by requiring that
the loads provided by these mechanisms cancel the load of
topography at the surface of the planet.
[27] Topography and the crust-mantle boundary both

Table 1. Summary of the Functions and Labeling Conventions Used in This Paper

Spherical Functions

H, H(Ω), Hlm Shape of Venus (also “topography”). First two notations are interchangeable; third notation refers to
the coefficients of the spherical harmonic expansion of H

N The observed gravitational equipotential surface at the planetary radius r=R (the “geoid”)
NH, NW, NΨ Static geoid contributions from topography, the Moho, and the mantle load
Nr¼RW Gravitational equipotential surface at the radius of the Moho, r=RW

W Shape of the crust-mantle interface, the “Moho”
Ψ Mantle mass sheet (units of kg m� 2)
F Flexural displacement
�H , �W Topography and Moho relief in excess of their local equipotential surfaces
NAiry, Ndyn The portions of the geoid generated by crustal isostatic and dynamic compensation
HAiry, Hdyn The portions of topography compensated by crustal isostatic and dynamic mechanisms

Degree-dependent parameters and kernels
Sff(l), Sfg(l) Power spectrum of the function f, cross-power spectrum of the functions f and g

Zdyn
l , ZAiry

l Admittance kernels for dynamic flow and crustal isostasy
�Zdyn
l Associated dynamic admittance kernel

Gdyn
l Geoid kernel (not to be confused with the gravitational constant, G)

Ddyn
l Displacement kernel (not to be confused with flexural rigidity, D)
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Figure 5. Various relationships between apparent depth of
compensation and the geoid-to-topography ratio. The tradi-
tional Cartesian dipole calculation for Airy isostatic compen-
sation produces the black line, and the spherically corrected
calculation produces the green curve [cf. Wieczorek and
Phillips, 1997]. The red curves correspond to dynamic load-
ing calculations, assuming a scale-invariant distribution of
Ψ (i.e., SΨΨ(l)� l� 2): the solid line corresponds to a global
sampling of topography and the geoid (equation (19)), and
the dotted lines correspond to synthetic models of H and N
windowed by the taper in equation (13).

Table 2. Modeled GTRs for Various Airy Isostatic and Dynamic
Compensation Depths. These Were Empirically Calculated Using
Synthetic Models of H and N, Windowed Using Equation (13) Using
Sampling Radii a, and Fit With Linear Regression (Equation (14))

a = 600 km a = 1000 km a = 2000 km

Airy compensation depth (km)
10 1.3 1.3 1.3
15 1.9 1.9 1.9
20 2.5 2.5 2.5
30 3.6 3.7 3.7
40 4.6 4.8 4.9
50 5.6 5.8 6.0

Dynamic compensation depth (km)
100 10 12 15
150 13 16 20
200 15 19 25
250 17 22 29
300 19 25 32
400 21 28 38
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produce loads where they depart from the local gravita-
tional equipotential surface. While the surface geoid is
observable, the equipotential surface at a given depth is de-
pendent on the planet’s internal structure. This potential
field can be approximated by including contributions from
topography, from relief on the crust-mantle interface W(Ω)
with a density contrast Δr, and from a mantle load Ψ(Ω)
with units of kg m� 2. The resulting equipotential surface
at r =RW is calculated by applying equation (9) for the three
interfaces

Nr¼RW
lm ¼ 4pG

gW 2l þ 1ð Þ R
RW

R

� �l

rcHlmþRWΔrWlmþRΨ
RΨ

RW

� �lþ1

Ψlm

" #
:

(20)

[28] We neglect the contribution from relief on the core-
mantle boundary (the “CMB”), because it has a second-order -
effect here (an a posteriori check confirms that flow-induced
CMB relief contributes less than 1 m to Nr¼RW ).
[29] Stresses in the lithosphere can also support topogra-

phy under the right conditions. While a variety of stress
distributions are possible, we will assume a simple model
in which loads are supported by flexure of a thin elastic
lithosphere. The lithosphere of Venus can be modeled as a
shell of thickness Te, and we define F(Ω) to be the deflection
of the shell from its undeformed configuration. Bilotti and
Suppe [1999] observed a geographical correlation between
compressional wrinkle ridges and geoid lows, along with a
similar correlation between rift zones and geoid highs.
While a number of regions are well fit by top loading admit-
tance models [Anderson and Smrekar, 2006], the tectonic
patterns observed by Bilotti and Suppe [1999] are broadly
consistent with the stress distribution produced by bottom
loading of an elastic shell. For simplicity, we define the
flexural deflection F(Ω) to be the component of topography
produced by dynamic flow:

F ¼ dHdyn: (21)

[30] In other words, we invoke an elastic lid that resists
deformation of the surface by dynamic flow. By necessity,
this model assumes a globally-uniform elastic thickness Te.
We assume Te = 20 km, slightly less than the elastic thick-
nesses inferred at some volcanic rises [McKenzie and Nimmo,
1997]. However, it is not clear if these estimates of elastic
thickness are globally representative [Anderson and Smrekar,
2006], so we acknowledge significant uncertainty in Te.
[31] Because the magnitude of flexure is coupled to the

unknown mantle load Ψ it must be incorporated into the
dynamic flow kernels (see Appendix B). We can then repre-
sent the spherical harmonic coefficients of topography in
excess of the geoid by assuming a normal stress balance,
with superimposed contributions from �W and dynamic flow

�Hlm ¼ �Δr
rc

RW

R

� �2
�Wlm þ Gdyn

l

�Zdyn
l

Ψlm (22)

where the kernels Gdyn
l and �Zdyn

l come out of the dynamic
flow calculation.

3.4. Two-Layered Inversion

[32] A single-layer inversion of gravity data is performed
by downward-continuing observed gravity anomalies to an
interface at some depth below the surface. Assuming that
all Bouguer gravity anomalies come from relief on the
crust-mantle interface, versions of equation (6) have been
used to solve for crustal thickness distributions on the Moon
[Zuber et al., 1994; Wieczorek and Phillips, 1998], Mars
[Zuber et al., 2000; Neumann et al., 2004], and Venus
[Wieczorek, 2007]. However, we have argued that crustal
thickness variations on Venus cannot be solely responsible
for the observed geoid (cf. Figure 3). For mean thicknesses
of 10–50 km the GTRs associated with crustal thickness
variations are 1–6 m km� 1, and with a globally sampled
GTR of 26 m km� 1 it is clear that the observed geoid must
be in large part produced by a deep compensation source. To
isolate the portion of the geoid corresponding to crustal
thickness, we will simultaneously invert for crustal thickness
and mantle mass anomalies.
[33] Previous studies have similarly endeavored to remove

high-GTR trends from the geoid: two-layered gravity inver-
sions have been performed for Venus by Banerdt [1986], to
solve for two mass sheets in the presence of an elastic litho-
sphere, and by Herrick and Phillips [1992], to characterize
dynamic support from mantle convection. However, these
studies did not have access to Magellan gravity models,
which limited their analyses to spherical harmonic degrees
less than 10 and 18, respectively. Although a follow-up
study by Herrick [1994] did incorporate some gravity data
from Magellan, resolution of the gravitational potential had
only been improved to degree 30 by that point. Because
the current gravity data has a resolution of �70 degrees,
our model provides the highest-resolution map of spatial
variations in crustal thickness.
[34] We remove the high-GTR trends from the geoid by

performing an inversion for relief on the crust-mantle inter-
face W(Ω) and for the mantle load Ψ(Ω). This means that
there are two unknowns, Wlm and Ψlm, for each spherical
harmonic degree and order, and we can invert uniquely for
these coefficients by imposing two sets of equations. We
use a crustal density of rc = 2800 kg m� 3 and a crust-mantle
density contrast of Δr = 500 kg m� 3, although neither of
these quantities is well-constrained due to uncertainties in
the composition of the crust and mantle.
[35] Our first set of equations, given by (22), constrains

topography to match the topography produced by crustal
isostasy and by dynamic flow in the presence of an elastic
lid. This is equivalent to a normal stress balance at the surface
of the planet. The second set of equations requires the
observed geoid to equal the sum of the upward-continued
contributions from H,W, Ψ, and the CMB. This can be posed
more succinctly by invoking kernel notation and separating
the geoid into its Airy component NAiry and its dynamic
component Ndyn

Nlm ¼ NAiry
lm þ Ndyn

lm

¼ �ZAiry
l

Δr
rc

RW

R

� �2

Wlm � Ddyn
l Ψlm

� �
þ Gdyn

l Ψlm

þN finite
lm

(23)

where N finite
lm is a correction for finite amplitude relief (see

Appendix A). Using equations (22) and (23) we can solve
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for the unknownsWlm and Ψlm.N finite
lm incorporates powers of

H andW, and because the shape of the crust-mantle interface
and its local equipotential surface are not known a priori the
solution is iterative. We first solve for Wlm and Ψlm without
Nr¼RW or finite amplitude corrections for W or H (no finite
amplitude corrections are applied for the mantle load). Then,
we calculate Nr¼RW and the finite amplitude terms using the
current inversion solutions. The equations are solved again
with these new estimates for the finite amplitude corrections,
and this process is repeated until convergence (factor of
≤ 10� 6 change for all coefficients) has been reached.

4. Results

4.1. Geoid-to-Topography Ratios

[36] Venusian geoid-to-topography ratios are plotted for
sampling radii a = 600, 1000, and 2000 km in Figure 6 along
with the corresponding dynamic apparent depth of compen-
sations. Smrekar and Phillips, [1991] calculated geoid-to-
topography ratios and apparent depths of compensation for
a dozen features on the Venusian surface, but the quality
of gravity and topography data has improved significantly
since then. In addition, we have improved the theory relating
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Figure 6. Maps of GTRs and dynamic compensation depths for various sampling radii a. Black topography
contours are overlain for geographic reference. The poorest resolution in theMGNP180U gravity solution is
found in the vicinity of (50�S, 180�E), so the large GTRs nearby may not have physical significance.

JAMES ET AL.: VENUS CRUSTAL THICKNESS

866



GTRs to compensation depths, so we update previous
interpretations of compensation mechanisms on Venus.
In particular, we have shown that the observed GTR is
dependent on the size of the sampling window, and that a
windowed GTR measurement for a given dynamic compen-
sation depth will be smaller than the globally sampled GTR
for the same compensation mechanism.
[37] Mean geoid-to-topography ratios are listed in Figure 7

for a handful of geographic regions. Uncertainties are given
by the spread of GTR estimates within a particular region,
and the GTRs measured at the point of highest topography
are given in parentheses. Because each sampling radius
produces its own measurement of the GTR, we get multiple
estimates of the compensation depth at each region. A region
compensated by a single mechanism should produce a
compensation depth that is consistent across various sam-
pling radii. It is interesting to note that the GTR measured
at the point of highest topography within a region tends
to be lower than the mean GTR for the region. This points
to a correlation between locally high topography and a
shallow compensation mechanism such as a crustal root,
and it implies that Venus topography is supported at multi-
ple compensation depths.
[38] As would be expected for topography that is partially

compensated by a dynamic mechanism (cf. Table 2), the
mean GTR increases with sampling radius. For a sampling ra-
dius of a = 600 km the globally averaged GTR is 13 m km� 1,
but the mean global GTR increases steadily for larger

sampling radii, up to the globally sampled fit of 26 m km� 1.
This is in contrast to the results of Wieczorek and Phillips
[1997] for the lunar highlands, where the means and standard
deviations of the GTR histograms were constant. The strong
dependence of GTR measurements on sampling radii for
Venus can be attributed to the presence of dynamic topogra-
phy, for which the value of the admittance function is strongly
dependent on wavelength (cf. Figure 4).
[39] It should be understood that these compensation depths

generally do not correspond to thickness of the crust, as most
are deeper than the granulite-eclogite phase transition that
represents a theoretical upper bound to the thickness of the
crust (see the next section for discussion). This suggests that
crustal thickening alone cannot explain the observed geoid
and topography. Smrekar and Phillips [1991] reported a bi-
modal distribution of compensation depths, and histograms
of GTRs as a percentage of surface area show a similar dou-
ble-peaking for a > 2000 km (Figure 8). This motivates our
two-layered compensation model.

4.2. Crustal Thickness and Mantle Mass Anomalies

[40] A two-layered inversion is nonunique insomuch as the
mean crustal thickness and a representative depth for the man-
tle load are unknown, and without the benefit of seismic data
from Venus it is difficult to accurately infer either of these
depths. However, we can place constraints on the depth of
the crust-mantle interface. For a lower bound on the compen-
sation depth R�RW (the mean crustal thickness), it can be

Figure 7. Geoid to topography ratios (m km� 1) and apparent depths of compensation (km) for 19 geo-
graphic features on Venus. Each GTR estimate represents the average GTR measured over the region of in-
terest, and the corresponding uncertainty is given by the standard deviation of GTR values within the region.
The numbers in parentheses give the GTR localized at the point of highest topography. The corresponding
compensation depths are listed for both dynamic and Airy compensation models, using the relationships
plotted in Figure 5. Colors correspond to the three physiographic classes described in section 6: red indicates
a region with a high GTR, green indicates an intermediate GTR, and blue indicates the lowest GTR, as
determined by the a = 2000 km windowing.
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noted that the solution for the crust-mantle interface should
not produce negative crustal thickness anywhere on the
planet. This constraint was used on Mars to deduce a lower
bound of 50 km for the mean crustal thickness [Zuber et al.,
2000; Neumann et al., 2004]. The lowest topography on
Venus is a little more than 2 km below the mean radius, and
this zero-thickness constraint results in a lower bound of
roughly 8 km for R�RW, depending on the compensation
source (see Table 3). For an upper bound we refer to the
granulite-eclogite phase transition under the assumption that
the basaltic compositions measured by the Soviet landers
are representative of the crust as a whole (Figure 9). Eclogite

is �500 kg m� 3 denser than basaltic rock, so any crust
beyond the eclogite phase transition would be negatively
buoyant and prone to delamination. Any eclogite material that
is not delaminated will contribute negligibly to the observed
geoid or to topographic compensation since its density would
be close to that of mantle rock. The existence of stable crust
below the solidus depth is also unlikely, so we regard the
granulite-eclogite phase transition and the solidus as upper
bounds for the thickest crust. The exact depths of these transi-
tions rely on Venus’s geothermal gradient, another quantity
that has not been directly measured. However, the maximum
depth for stable basalt crust will occur for a geothermal gradi-
ent between 5 and 10�C km� 1. For any reasonable choice of
inversion parameters the thickest crust is always found under
Maxwell Montes on Ishtar Terra, so we will consider 70 km
(cf. Figure 9) to be an upper bound for the thickness of the
crust at Maxwell Montes. With this constraint, upper bounds
for mean crustal thickness can be determined (see Table 3).
[41] It is more difficult to constrain the dynamic loading

depth, especially because the driving mass sheet is a simplifi-
cation of a physical mechanism not confined to a particular
depth (e.g., distributed density anomalies; see section 5.2 for
discussion). However, we can inform our choice of loading
depth by attempting to minimize the combined power spectra
of HW and HΨ. A slightly more subjective criterion for choos-
ing the loading depth R�RΨ involves the correlation of
crustal thickness and the loading function. If we introduce
the crustal thickness T(Ω) =H(Ω)�W(Ω), we can define the
cross power spectrum for T and Ψ

STΨ lð Þ ¼
Xl
m¼�l

TlmΨlm: (24)

[42] A correlation function for crustal thickness and
dynamic loading can then be calculated

gTΨ lð Þ ¼ STΨ lð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
STT lð ÞSΨΨ lð Þp : (25)

[43] This degree-dependent function will equal zero where
T and Ψ are uncorrelated. Although it is not obvious that
these two quantities should be completely uncorrelated,
large positive or negative values of the correlation function
are likely characteristic of a poor choice of model para-
meters: if a true compensation mechanism has an admittance
spectrum significantly different from the admittances
produced by both crustal thickening and dynamic flow, a
two-layered model will produce solutions for T and Ψ that
are either correlated or anticorrelated in an attempt to match
the observations. We choose a loading depth of R�RΨ =
250 km, noting that the combined power of HAiry and Hdyn

is minimized for large mantle loading depths. A larger chosen
value of R�RΨ reduces the power of HAiry and Hdyn slightly
but results in a stronger anticorrelation of T and Ψ at low
spherical harmonic degrees. This depth also corresponds to
the upper end of the regional GTR spread for a = 2000 km
(cf. Figure 8) and to the upper cluster in the double-peaked
histogram (Figure 8 in conjunction with Table 2).
[44] We calculated solutions to equations (22) and (23)

using the parameters listed in Table 4. Our smoothing filter
for crust-mantle relief W is modified from Wieczorek and
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Table 3. Bounds on Mean Crustal Thickness (for a Maximum
Depth of 70 km at Maxwell Montes)

Dynamic Compensation
Depth (km) Lower Bound (km) Upper Bound (km)

100 22 30
150 11 27
200 9 26
250 8 25
300 8 24
400 7 23
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Figure 9. Basalt-eclogite phase diagram, adapted after Ito
and Kennedy [1971] with superimposed geothermal gradients.
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Phillips [1998], and is defined to have a value of 0.5 at the
critical degree lc such that

lWl ¼ 1þ 2l þ 1ð Þ2
2lc þ 1ð Þ2

R

RW

� �2 l�lcð Þ" #�1

: (26)

[45] We use lc = 70 for our crustal thickness solution.
A similar filter is used for mapping the mantle load Ψ, with
lc = 40.
[46] Crustal thickness is plotted in Figure 10 and the man-

tle load is plotted in Figure 11; these plots emphasize crustal
plateaus and volcanic rises, respectively. The addition of
bottom-loaded flexure does not appreciably change the mag-
nitude of crustal thickness, but finite amplitude corrections
changed the calculated crustal thicknesses by as much as 6
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Figure 10. Crustal thickness map (in km) for a mean crustal thickness of 15 km and a mantle load depth
of 250 km. Contour spacing is 5 km.

Table 4. Parameter Values for the Two-Layered Inversion

Parameter Value

Crustal density, rc 2800 kg m� 3

Crust-mantle density contrast, Δr 500 kg m� 3

Mean crustal thickness, R�RW 15 km
Mantle mass sheet depth, R�RΨ 250 km
Effective elastic thickness, Te 20 km
Poisson’s ratio, n 0.25
Young’s modulus, E 60 GPa
Core-mantle density contrast, Δrcore 3000 kg m� 3
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Figure 11. Mantle load distribution (in units of kg m� 3) for a mean crustal thickness of 15 km and a
mantle load depth of 250 km. Warm colors indicate a mass deficit in the mantle and positive buoyancy;
cool colors indicate mass excess and negative buoyancy. Contour spacing is 2� 106 kg m� 2.
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km. A plot of the power of HAiry and Hdyn (Figure 12) shows
that dynamic loading is responsible for most of the long
wavelength (l < 27) topography and that the crustal thick-
ness variations tend to support the shorter wavelengths.
[47] In a number of highland regions (e.g., Alpha and

Ovda Regiones) crustal thickness is well correlated to topog-
raphy, while in other regions (e.g., Atla and Eistla Regiones)
dynamic loading is the dominant contributor to topography.
Other regions such as Thetis Regio appear to have superim-
posed contributions from crustal thickening and dynamic
loading. The center of Thetis Regio features thickened crust,
while the exterior topographic swell is supported by
dynamic loading and has no thickening of the crust. The
central region of crustal thickening within Thetis Regio is
correlated to radar-bright terrain [Pettengill et al., 1991] as
well as high-emissivity [Pettengill et al., 1992].

5. Discussion

5.1. Mean Crustal Thickness

[48] In the process of performing our two-layered crustal
thickness inversion, we have constrained the mean thickness
of the crust to be 8–25 km for a reasonable range of physical
parameters. The upper limit of this crustal thickness range is
somewhat less precise than the lower limit due to uncertain-
ties in the geothermal gradient and the kinetics of metamor-
phism. Namiki and Solomon [1993] argued that if Maxwell
Montes was formed tectonically in the geologically recent
past, a crustal root may have grown too quickly for the
basalt-eclogite phase transition to limit crustal thickness. If
we therefore exempt Maxwell Montes from our requirement
that no crust should exceed 70 km thickness, the mean
crustal thickness can be as large as 45 km for a geothermal
gradient range of 5–10�C km� 1.
[49] Previous measurements of mean crustal thickness have

been made using observations of crater relaxation states, char-
acteristic spacing of tectonic features, and spectral gravity
arguments. Noting that craters on Venus are relatively unre-
laxed, Grimm and Solomon [1988] used viscous relaxation
models to argue that the mean thickness of the crust should
be less than 20 km for a geothermal gradient dT/dz = 10�C
km� 1. These conclusions were made under the assumption
that the lower crust is very weak, but the experiments by

Mackwell et al. [1998] have since shown that a dry lower crust
can maintain relatively high differential stresses. New relaxa-
tion calculations are needed, and the updated constraints on
crustal thickness may be somewhat looser than those proposed
by Grimm and Solomon [1988].
[50] Zuber [1987] also constrained the mean crustal thick-

ness to a range of 5–30 km by noting that the surface expres-
sions of tectonic deformation often have two characteristic
wavelengths. If these features can be interpreted as the result
of a weak lower crust, the shorter wavelength may corre-
spond to deformation of the upper crust while the longer
wavelength would correspond to deformation of the rigid
upper mantle. As with the constraints from crater relaxation,
the Zuber [1987] models will need to be updated with the
dry crust rheology of Mackwell et al. [1998], which is less
distinguishable from ultramafic rheologies.
[51] Previous gravity studies have provided estimates for

the thickness of the crust by producing a fit to the observed
admittance spectrum. Konopliv et al. [1999] notes that at
high degrees the global admittance function is best fit by
an Airy compensation model with 25 <R�RW< 50 km,
and Grimm [1997] use the Konopliv et al. [1999] type of
analysis to inform a choice of 30 km for the mean crustal
thickness. Estimates of mean crustal thickness from the
global admittance function are premised on the assumption
that all high-degree topography is supported by crustal com-
pensation. Although this assumption may be true in many
cases, we note that most exceptions involve mechanisms
with higher GTRs (in particular, shallow mantle heterogene-
ities and flexurally supported topography). Therefore, we
believe it is possible for a crustal thickness estimate produced
by global admittance analysis to be an over-estimation.
Regional crustal thickness estimates can similarly be made
for localized spectral analysis (see Table 5 for a comparison
of our crustal thicknesses with the results of Anderson and
Smrekar [2006]), although spatio-spectral techniques do not
produce global estimates for the mean crustal thickness. Our
crustal thicknesses match those of the Anderson and Smrekar
study at the crustal plateaus (where their crustal thickness
estimates are most reliable) if we choose a global mean thick-
ness of about 15 km.

5.2. Interpretation of the Mantle Load Function

[52] The function Ψ(Ω) represents anomalous mass in the
mantle that drives flow, but thus far we have not speculated

Table 5. Comparison of Crustal Thickness Estimates Between
This Study (Mean Thickness of 15 km) and the Spatio-spectral Lo-
calization Study of Anderson and Smrekar [2006]

Region This Study Anderson and Smrekar [2006]

Alpha Regio 23 25
Atla Regio 24 25
Atalanta Planitia 15 25
Beta Regio 26 65
Eistla Regio 17 95
Fortuna Tessera 31 25
Lakshmi Planum 41 45
Ovda Regio 37 35
Phoebe Regio 25 45
Tellus Regio 23 25
Thetis Regio 31 25
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Figure 12. Power spectrum for topography, along with the
components of topography compensated by crustal thicken-
ing (green) and dynamic support (red). Long-wavelength to-
pography is dominated by dynamic loading, while crustal
thickening largely compensates short-wavelength features.
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on the source of anomalous mass. One potential source for
the observed mass anomalies is thermal density variations.
We observe a number of roughly circular regions of mass
deficit in the mantle along with broadly interconnected down-
wellings, and this distribution is consistent with models of a
thermally convecting mantle [Schubert et al., 1990; Herrick,
1994]. The two largest regions of mass deficit, found at Atla
and Beta Regiones, likely represent upwelling mantle plumes
[Smrekar et al., 2010]. Assuming a volumetric thermal expan-
sion coefficient of a = 3 � 10� 5 C� 1 and a maximum
temperature contrast ΔT = 300�C, density variations of
r0aΔT = 30 kg m� 3 might be reasonably expected due to
thermal variations in the mantle. With this density contrast,
thermally buoyant material would have to be distributed
through �450 km of the vertical column to account for the
mass deficits predicted at Atla and Beta Regiones.
[53] Mass anomalies can alternatively be interpreted as

compositional density anomalies, particularly those that
arise from chemical differentiation. The Mg-rich mantle re-
siduum left behind by fractional melting of a mantle parent
rock has a reduced density due to a depletion of iron oxides.
Globally, there is a long-wavelength (l < 40) correlation be-
tween the mantle load Ψ and the crustal thickness T, which is
consistent with a parallel production of crustal material and
Mg-rich residuum. We can test the plausibility of residuum
as a source for the mantle load Ψ by comparing the mass
of modeled crustal material to the anomalous mass in the
mantle. Following the analysis of Phillips et al. [1990], the
density of mantle residuum, rr, can be modeled as a function
of the melting mass fraction f and the density drop drr from
a mantle parent rock, rm, to Mg-pure forsterite:

rr ¼ rm � f drr: (27)

[54] Consider the fractional melting of a mantle parcel
with an original mass M0

. Assuming all of the melt is
extracted, the mass and volume of the resulting residuum
material are, respectively, Mr = (1� f)M0 and Vr =Mr/rr,
and the extracted melt mass is equal to fM0. The observable
mass anomaly, dM, can be calculated as the difference be-
tween the mass of residuum material and an equivalent vol-
ume of unmelted mantle:

dM ¼ 1� fð ÞM0 1� rm
rr

� �
: (28)

[55] Note that the residuum volume Vr will typically be
smaller than the volume of the original parcel, and that prim-
itive mantle material fills the space created by such a volume
change. If all of the melt recrystallizes into the crust, we can
represent the ratio of crustal mass, Mc, to the observable
residuum mass deficit as

Mc

dM
¼ � rr

1� fð Þdrr
: (29)

[56] Assuming densities of 3500 kg m� 3 for primitive man-
tle material and 3250 kg m� 3 for forsterite, and assuming a
melt fraction f=0.1, we would expect a ratio of crustal mass
to anomalous residuum mass of about Mc/dM�� 15.
Figure 13 plots the total accumulation of crustal material in a
number of regions of high topography, along with the

corresponding mass deficits in those regions. Error bars in
Figure 13 represent the distribution of mass estimates for a
range of model parameters, including mean crustal thicknesses
of 10–30 km, dynamic loading depths of 150–400 km, and
elastic thicknesses of 0–30 km. The ratios of crustal mass to
anomalous mantle mass in a number of regions, including
Ishtar Terra and Ovda Regio, are consistent with the accumu-
lation of mantle residuum. As shown in Figure 13, this propor-
tionality is robust for a reasonable range of parameters.
Although Phoebe and Thetis Regiones also have accumula-
tions of crust correlated with mass deficiency in the mantle,
they have greater dynamic support than would be expected
for a mantle residuum paradigm, so it is likely that they could
be supported by thermal buoyancy in addition to the possible
accumulation of residuum. The mass deficits at Atla and Beta
Regiones are qualitatively different from the mass deficits at
other locations on the planet, with larger amplitudes and
narrower lateral extents. Atla and Beta also have much more
dynamic support than would be expected in these regions from
an accumulation of residuum, so it is likely that these mass
deficits are primarily thermal in origin.

6. Conclusions

[57] We have mapped the spatial variations of crustal
thickness and a deep compensation mechanism (Figures 9
and 10). This inversion predicts that some topographic rises
correspond to thickened crust (Ishtar Terra, Ovda Regio,
Tellus Regio, Alpha Regio) while others are primarily com-
pensated at depth (Beta Regio, Atla Regio). Mean crustal
thickness has been constrained to a range of 8–25 km, so
crustal material makes up between 0.2% and 0.7% of the
total planetary mass. Basaltic phase constraints on crustal
thickness required that the geothermal gradient be less than
15�C km� 1, with an ideal range of 5–10�C km� 1. Assuming
a temperature of ~1450�C at the base of the thermal bound-
ary layer, this range of geothermal gradients predicts
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as the accumulated mass in excess of the mass of a compa-
rably sized region with mean crustal thickness. Error bars
represent the distribution of mass estimates for a range of
model parameters.
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a thickness of 100–200 km for the thermal lithosphere. A
model depth of 250 km for the mantle load was shown to be
ideal for a two-layered inversion, but our mass sheet Ψ is a
proxy for a more complex distribution of mass in the mantle.
[58] Our results allow us to separate provinces into three

physiographic classes, defined by low, intermediate, and
high GTR values. Provinces of the first class (GTR < 10
m km� 1, calculated for a sampling radius a = 2000 km)
are not strongly influenced by thermal convection, and high
topography in these regions corresponds to thickening of the
crust. Crustal plateaus in this class (except for those with the
lowest GTRs) are possibly underlain by Mg-rich residuum
in quantities that are consistent with a local melting source
for crustal material. The intermediate class (10 ≤ GTR ≤
20 m km� 1) may also correspond to accumulation of crust
and anomalous concentrations of residuum, but the magni-
tudes of mass anomalies in the mantle are too large to be
explained solely by residuum, and we must invoke some
amount of likely thermally-driven uplift. These highlands
may mark the sites of late-stage plumes, in which case they
would be younger than regions of the first class. We con-
clude that provinces in the third class (GTR > 20 m km� 1)
are influenced primarily by present-day dynamic flow; this
class includes volcanic rises, which are formed by mantle
upwellings, and the low-lying plains, which are correlated
with mantle downwellings.
[59] This analysis points to a paradigm in which Venus to-

pography is supported through a combination of dynamic
flow, melt residuum buoyancy, and thickening of the crust.
Although tectonic thickening of the crust has not been
excluded, highland crust volumes are consistent with the
accumulation of melt over upwelling mantle plumes.

Appendix A: Gravitational Potentials From Finite-
Amplitude Interface Relief

[60] Wieczorek and Phillips [1998] derived the static po-
tential perturbations U(Ω) in a sphere at radius r produced
by an interface B(Ω) with a density contrast ΔrB at radius RB

[61] Equation (A1) accounts for finite amplitude relief on
B by incorporating powers of topography, which must be
numerically calculated

nBlm ¼ 1

4p

Z
Ω
Bn Ωð Þ�Ylm Ωð ÞdΩ (A2)

[62] The higher-order summation terms in equation (A1)
fall off rapidly with increasing n. For the relief amplitudes
encountered on Venus it is sufficient to truncate the summa-
tion at n = 3, although with the exception of topography and
Moho relief at Maxwell Montes, finite amplitude corrections

are mostly unnecessary. When interface relief is small, the
summation terms for n> 1 are negligible and we can rewrite
equation (A1) in terms of the equipotential perturbation
NB(Ω,r) for upward- and downward-continuation

NB
lm rð Þ ¼

4pGR2
B

gr 2l þ 1ð Þ
RB

r

� �lþ1

ΔrBBlm r ≥ RB

4pGR2
B

gr 2l þ 1ð Þ
r

RB

� �l

ΔrBBlm r < RB

8>>><
>>>:

(A3)

where gr is the gravitational acceleration at radius r.
[63] If topography H and Moho relief W have finite ampli-

tudes, we can calculate the geoid correction Nfinite

Nfinite
lm ¼ 4pGR2

g 2lþ 1ð Þ
Xlþ3

n¼2

nHlmrcþnWlmΔr
RW

R

� �lþ3�n
" #Yn

j¼1
lþ 4� jð Þ

lþ 3ð ÞRnn!

(A4)

Appendix B: Propagator Matrices and Dynamic
Response Kernels

[64] Incompressible Newtonian flow in a spherical shell
can be analytically calculated by propagating velocity and
stress boundary conditions through the interior of the body.
Following the methodology of Hager and Clayton [1989],
we define a vector of velocity and stress variables in terms
of the reference viscosity m0 and radial position r

ulm rð Þ ¼

vrlm rð Þ
vθlm rð Þ

trrlm rð Þ þ rrgrN
r
lm

� 	 r

m0
trθlm rð Þ r

m0

2
666664

3
777775: (B1)

vrlm rð Þ and vθlm rð Þ are radial and poloidal velocity coefficients,
respectively. trrlm rð Þ and trlm rð Þ are normal stress and poloidal
shear stress coefficients. Other parameters are the local den-
sity rr, the local gravitational acceleration gr, and the local
gravitational equipotential surfaceNr

lm. With the introduction

of a new variable υ= ln(r/R), the problem of Stokes flow in a
sphere can be posed as a first-order differential equation:

du

dυ
¼ Auþ a (B2)

where

A ¼
�2 l 0 0
�1 1 0 m�1

12m �6lm 1 l
�6m 4l � 2ð Þm �1 �2

2
664

3
775 (B3)

and

Ulm rð Þ ¼

4pGR2
B

2l þ 1

RB

r

� �lþ1Xl¼3

n¼1

nBlmΔrB
Rn
Bn!

Yn

j¼1
l þ 4� jð Þ

l þ 3
r > RB þmax Bð Þ

4pGR2
B

2l þ 1

r

RB

� �lX1
n¼1

nBlmΔrB
Rn
Bn!

Yn
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l þ j� 3ð Þ

l � 2
r < RB þmin Bð Þ

8>>>>><
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(A1)

JAMES ET AL.: VENUS CRUSTAL THICKNESS

872



a ¼
0
0

grr2drlm rð Þ=m0
0

2
664

3
775: (B4)

[65] Here m is viscosity normalized by the reference
viscosity and drlm represents the anomalous density distri-
bution. Solutions to equation (B2) can be represented with
propagator matrices of the form:

PRR0 ¼ exp� A� ln �R0=Rð Þ½ �: (B5)

[66] The matrix PRR0 propagates the vector u at radius R0

to the planetary radius R. We can consider the simplified
case in which viscosity is a step-wise function of radius
and anomalous density is replaced by discrete sheet masses
Ψ j

lm (with units of kg m� 2). The solution to equation (B2)
can then be represented by equating the surface boundary
condition to the upward-propagated boundary conditions of
J + 1 interior interfaces:

u Rð Þ ¼ PRR0u R0ð Þ þ
XJ

j¼1
PRRjaj (B6)

and

a ¼
0
0

rjgrjΨ
j
lm=m0
0

2
664

3
775: (B7)

[67] The formulation of propagator matrices makes it
simple to construct an n-layered model in which viscosity
varies radially in a step-wise sense

PRR0 ¼ PRRn�1 �PRn�1Rn�2⋯PR2R1 �PR1R0 : (B8)

[68] In this way we can represent an arbitrary radially
symmetric distribution of viscosity in the planet’s
interior.
[69] The equations of flow must be constrained by bound-

ary conditions at the surface and at the core-mantle bound-
ary. With a free slip condition for the liquid core boundary
at r =RC and a no-slip condition at the surface of the planet,
we can write the system of equations for flow driven by a
single mass sheet Ψ at r =RΨ

0
0

�rmg Hdyn
lm � Ndyn

lm

� �
� plm

trθlm Rð Þ

2
664

3
775

¼ PRRC

0m0
R
vθlm RCð Þ

RC

R
ΔrcoregCClm

0

2
66664

3
77775þ PRRΨ

0
0

RΨgΨ
R

Ψlm

0

2
664

3
775:

(B9)

where gΨ and gC are the gravitational accelerations at radii
r =RΨ and RC. The propagator matrices PRRC and PRRΨ

represent propagation of internal boundary conditions from
the core to the surface and from the loading depth to the
surface, respectively. The surface boundary condition
includes a flexural term p that is reminiscent of a bottom-

loading flexure scenario (see Appendix C for discussion).
This system of four equations has four unknowns: surface
relief Hdyn

lm , surface poloidal shear stress trθlm Rð Þ, core-mantle
boundary relief Clm, and liquid core poloidal velocity
vθlm RCð Þ . Alternative boundary conditions can also be
explored; for example, a free-slip boundary condition at
the surface and a no-slip boundary condition at the CMB
would be modeled by the following system of equations:

0m0
R
vθlm Rð Þ

�rmg Hdyn
lm � Ndyn

lm

� �
� plm

0

2
6664

3
7775

¼ PRRC

0
0

RC

R
ΔrcoregCClm

trθlm RCð Þ

2
6664

3
7775þ PRRΨ

0
0

RΨgΨ
R

Ψlm

0

2
664

3
775: (B10)

where surface poloidal velocity vθlm Rð Þ and CMB poloidal
shear stress trθlm RCð Þ are the new free variables.
[70] Once the equations of flow have been solved for the

free variables, we can develop a few degree-dependent
kernels that are related to the geoid and surface topography.
Following the terminology of Richards and Hager [1984],
the first kernel is defined as the total geoid anomaly at the
surface scaled by the internal mass perturbation

Gdyn
l ¼ Ndyn

lm

Ψlm
(B11)

where the portion of geoid height produced by dynamic flow
Ndyn is known implicitly via the summed contributions of
the three interfaces

Ndyn
lm ¼ 4pGR

g 2l þ 1ð Þ rmH
dyn
lm þ RΨ

R

� �lþ2

Ψlm þ Δrcore
RC

R

� �lþ2

Clm

" #
:

(B12)

[71] The equivalent kernel for Airy isostatic compensation
of small amplitude topography at the Moho can be calcu-
lated using equations (6)–(7)

GAiry
l ¼ 4pGR

g 2l þ 1ð Þ � RW

R

� �2

þ RW

R

� �lþ2
" #

(B13)

[72] An alternative kernel preferred by some authors [e.g.,
Herrick and Phillips, 1992] is the potential kernel

Kdyn
l ¼ Ndyn

lm

NΨ
lm

(B14)

where NΨ
lm is the static geoid contribution from the sheet

mass Ψ:

Ndyn
lm ¼ 4pGR

g 2l þ 1ð Þ
RΨ

R

� �lþ2

Ψlm: (B15)

[73] The second kernel is the gravitational admittance
associated with dynamic flow
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Zdyn
l ¼ Ndyn

lm

Hdyn
lm

: (B16)

[74] When dealing with self-gravitation, it is sometimes
convenient to use an adjusted admittance function for which
the denominator is the topography in excess of the associ-
ated geoid

�Zdyn
l ¼ Ndyn

lm

Hdyn
lm � Ndyn

lm

¼ 1

Zdyn
l

� 1

 !
: (B17)

[75] The third kernel signifies surface displacements nor-
malized by the mantle mass load:

Ddyn
l ¼ Hdyn

lm

Ψlm
¼ Gdyn

l

Zdyn
l

: (B18)

[76] We can use kernels to relate an unknown mantle load
to the dynamic components of the geoid and geoid-corrected
topography

Ndyn
lm ¼ Gdyn

l Ψlm; (B19)

and

�H
dyn
lm ¼ Gdyn

l

�Zdyn
l

Ψlm: (B20)

Appendix C: An Elastic Lithosphere that Resists
Dynamic Flow

[77] The elastic response of a planet’s lithosphere to
loading can be modeled as a thin spherical shell. A load p(Ω)
acting on a shell can be related to the flexure of the
shell from its undeformed configuration F(Ω) [Turcotte
et al., 1981]

Dr6 þ 4Dr4 þ ETeR
2r2 þ ETeR

2
� 	

F Ωð Þ
¼ R4 r2 þ 1� n

� 	
p Ωð Þ: (C1)

[78] Similar to the dynamic flow analysis of Appendix B,
this formulation neglects toroidal flexure terms and assumes
laterally homogeneous material parameters. We can write a
solution to this equation by first defining two nondimen-
sional parameters:

c1l ¼
�l3 l þ 1ð Þ3 þ 4l2 l þ 1ð Þ2

�l l þ 1ð Þ þ 1� n
(C2)

and

c2l ¼
�l l þ 1ð Þ þ 2

�l l þ 1ð Þ þ 1� n
: (C3)

[79] We can then write solutions to equation in terms of
spherical harmonic coefficients:

elFlm ¼ plm; (C4)

where the amplitude of flexure is linearly related to the
elastic loading by a degree-dependent term el

el ¼ D

R4
c1l þ

ETe
R2

c2l : (C5)

[80] The first term in equation (C5) is associated with
bending stresses, which are relevant at higher degrees, and
the second term is associated with membrane stresses.
[81] If the flexural displacement F is defined to be

the component of topography associated with dynamic flow
(i.e., F=Hdyn), then equation (C4) can be inserted into the
dynamic flow equation (B9). We can rearrange (B9) and
solve the four equations (i= 1 : 4) using an arbitrarily unitary
mantle mass load:

Pi2
RRC

m0
R
vθlm RCð Þþ Pi3

RRC
gC

RC

R
�di3

4pG
2l þ 1

rmR
RC

R

� �lþ2
" #

ΔrcoreClm

þ di3 rmg � 4pG
2l þ 1

Rrm
2 þ el


 �
Hdyn

lm þ di4trθlm Rð Þ

¼ �Pi3
RRΨ

RΨgΨ
R

þ di3
4pG
2l þ 1

rmR
RΨ

R

� �lþ2

(C6)

where the Kronecker delta, dij, equals one if i = j and equals
zero otherwise. Solutions for the four free variables can then
be used to develop the kernels in Appendix B.
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